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Abstract

Designing public transport networks involves tradeoffs between coverage, service
frequency, and direct service. We use the expansion of the bus system in Jakarta,
Indonesia, to study these tradeoffs. We analyze how new direct connections, changes
in bus travel time, and wait time reductions affect bus ridership and aggregate flows,
and estimate a transit network demand model by matching the route launch events.
Commuters in Jakarta are 2-4 times more sensitive to wait time than bus time, and
inattentive to long routes. We develop a flexible framework to characterize optimal
networks. A less concentrated network would increase ridership and commuter welfare.

∗We are grateful to TransJakarta for sharing their data. We thank David Atkin, Emily Breza, Dave
Donaldson, Allan Hsiao, Myrto Kalouptsidi, Natesh Pillai, Felix Tintelnot, and Aaron Smith for useful
conversations, Nick Tsivanidis and Matthew Turner for useful discussions of this paper, and participants at
the NBER Summer Institute urban meeting and seminar participants for useful feedback. Lolita Moorena,
Nadia Rayhanna, Nadia R Avianti, and Nikhil Kumar provided exceptional research assistance. We thank
Paolo Adajar, Aaron Berman, Robert Dulin, Laya Gollapudi, Deivy Houeix, Helen Hu, Drew Johnston,
Moulinrouge F Kaspar, Ariba Khan, Van Anh Le, Lauren Li, Anna Lingyi Ma, Kalyan Palepu, Jackson C
Phifer, Xiaocun Qiu, Margaret Sands, San Singh, Yulu Tang and Hoi Wai Yu for research assistant work
at different stages of the project. We are grateful to Kyle Schindl, Analysia Watley, Aditi Chitkara, and
Nikhil Kumar for their help in developing the bus GPS headway engine. The project has IRB approval from
MIT COUHES, protocol 1810556772. This material is based upon work supported by the National Science
Foundation under Grant No. 2049784, by the Australian Government, the International Growth Centre, the
Harvard Asia Center, and the Harvard Data Science Initiative.

†Kreindler: Harvard University (gkreindler@g.harvard.edu), Gaduh: University of Arkansas
(agaduh@walton.uark.edu), Graff: Harvard University (tgraff@g.harvard.edu ), Hanna: Harvard Kennedy
School (rema_hanna@hks.harvard.edu), Olken: MIT (bolken@mit.edu).

mailto:gkreindler@g.harvard.edu
mailto:agaduh@walton.uark.edu
mailto:tgraff@g.harvard.edu
mailto:rema\protect _hanna@hks.harvard.edu
mailto:bolken@mit.edu


1 Introduction

Governments are investing heavily in public transport in the megacities of low- and
middle-income countries (LMIC), giving city governments a growing role in planning and
operations. For example, the number of LMIC cities with a Bus Rapid Transit (BRT) system
went from 14 cities in 2000 to 100 in 2020 (BRT+ Centre of Excellence and EMBARQ, 2023).
Bus networks are particularly important because they account for a large share of ridership.
For example, Delhi’s public bus system carried 3.3 million passengers per day in 2017, much
more than its more famous metro system (2.7 million, Hindustan Times 2018). Ensuring
that these transport systems are well-designed is key to sustainable and efficient mobility.

Designing bus networks involves tradeoffs. Because the fixed cost of a bus route is
relatively small (compared to, say, building a subway or light-rail line), there is great latitude
in designing a system. For a given number of buses, one can choose between having a
more direct network (i.e., more direct routes, rather than a hub-and-spoke system that
requires more changes between routes); a more intensive route network (i.e., more frequent
service to key locations); and a more expansive route network (i.e., many routes serving more
destinations).

Fundamental to these tradeoffs is an understanding of public transport preferences and
demand, which in turn affects bus ridership: how commuters value bus travel time, wait
times in stations, and transfers between routes. Different preference parameter configu-
rations may result in very different-looking optimal transportation networks. Estimating
these preferences is challenging, however, because it requires plausibly exogenous variation
in system-level attributes.

In this paper, we study the expansion of the TransJakarta bus system in Jakarta, Indone-
sia. TransJakarta operates a public Bus Rapid Transit (BRT) network, which is the largest
such network in the world (Institute for Transportation and Development Policy, 2019).
From 2016-2020, TransJakarta launched a total of 93 routes across the city in a staggered
fashion for both BRT routes and non-BRT (feeder) routes. These new routes changed the
attractiveness of bus travel in different ways for different potential journeys, which we use
to estimate preferences and study the implication for network design.

Our paper proceeds in three steps. First, we estimate the reduced form impact on bus
ridership and overall commuting flows from improvements to the TransJakarta network. To
do so, we show how the 93 new bus routes create different types of improvements in the
availability of direct connections, travel times, and wait times for different origin-destination
pairs, and analyze these ‘events’ using a differences-in-differences framework. Second, we
estimate a model of commuter travel behavior, which allows us to back out the underlying
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preference parameters that match the reduced-form estimates from step 1. Third, we simu-
late what optimal transportation networks would look like given the preferences from step
2, and contrast their characteristics with that of the existing network.

For the first step, we define three types of ‘events’ that correspond to different types
of service improvement for origin-destination (o, d) pairs. The first two events focus on
new direct routes for (o, d) pairs that were previously served only via transfer connection.
The first event type (hereafter, Event 1) considers cases where the total time on the bus
is unchanged with the new direct route. This introduces variation in the degree to which
the network is direct. Event 2 considers new direct routes where the total time on the bus
also falls, creating additional variation in service speed in addition to becoming more direct.
Event 3 considers (o, d) pairs that receive a new direct route that overlaps with the old direct
route(s) from o to d. This leads to more frequent service, varying the degree to which service
is intensive, without substantially changing time spent on the bus or the directness of the
route.

We use several new datasets to analyze these events. To measure (o, d) ridership flows on
the bus network, we use TransJakarta’s detailed administrative data for both BRT routes
and non-BRT feeder routes. TransJakarta collects fares using a tap-to-pay smart card system
and our data includes every tap — over 500 million taps in the study period — along with an
anonymized card identifier.1 Second, we measure bus travel times and the distribution of wait
times that passengers face using GPS data that tracks the position of every TransJakarta bus
every 5-10 seconds. Third, we measure overall commuting flows on each (o, d) pair (regardless
of transportation mode) using anonymized smartphone location data. We aggregate the
outcome data at the weekly level and at the level of 1km-wide hexagonal grids, and show
robustness to other grid shapes and sizes.

Using a unified difference-in-differences design, we find that bus ridership is responsive
to each of these three types of service quality improvements.2 For BRT routes, a new direct
route between an existing (o, d) pair increases ridership by 0.16 log points. Event 2, which
substantially reduced travel times in addition to a new direct route, increased ridership by
0.27 log points. Event 3, which reduced wait times by 0.32 log points (through adding busses
via an incidental new route), increased ridership by about 0.09 log points, implying that
ridership also responds substantially to wait times. Event-study graphs show clear jumps
in ridership immediately after the launch of new routes, and no pre-trends. The results for

1Since the system enforces tap-in everywhere in the network, but only uses tap-out at a subset of BRT
stations, we use an algorithm to infer each trip’s likely destination. We validate this approach using the
subset of trips for which we directly observe both the origin and destination.

2We include a large set of “never-treated” origin-destination pairs, which largely alleviates the class of
problems with two-way fixed effects specifications (see, e.g., De Chaisemartin and D’Haultfoeuille 2022).
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non-BRT routes are typically larger in magnitude in proportional terms and similar in levels
than the BRT routes. Our results are stable when varying grid cell size from 500 meters
to 2 kilometers, implying that the events lead to new bus ridership rather than displacing
passengers from neighboring TransJakarta stations.

We next look at the impact of the same set of events on the aggregate volume of trips
between a pair of locations (regardless of whether people take the bus or an alternative),
measured using the smartphone location data. We do not find observable increases in all trips
for any of the events in our benchmark specification. In fact, we typically reject moderate
positive effects. In short, the results imply substantial increases in ridership when service
frequency improves on all three dimensions — directness, speed, and wait times — and with
this being driven by substitution towards bus trips, rather than by completely new journeys.3

With our reduced form estimates in hand, in the second step of our paper, we develop a
model of commuter travel behavior to estimate underlying preference parameters. The model
has a new formulation of how commuters choose routes within a geographically realistic
transit network, in the presence of stochastic wait times. A commuter traveling from o to d
chooses between direct and transfer bus options that differ in terms of type (BRT or non-
BRT), total travel time on the bus, and the necessity of a transfer. Buses on each route
arrive according to a Poisson process. A commuter who decides to take the bus gets a draw
of wait times for all routes in her choice set and selects the best option overall. Because the
idiosyncratic term in the model comes from random wait times given by Poisson processes,
the model is invariant to aggregating identical routes, a property that allows us to bypass
spurious gains from variety when we return to the optimal network design problem.4

Importantly, commuters sometimes face large choice sets with dozens of options within
TransJakarta’s network, many of which are too slow to consider. Therefore, we allow for
(and estimate the degree of) partial inattention to bus route options that have high travel
time on the bus, relative to the quickest bus option in the choice set (Larcom et al., 2017)

In a higher nest, commuters choose between using the bus network, taking expectations
over the wait times they may face, or a private transportation outside option (e.g. motorbike,
car), based on a logit specification.5

3Converting road traffic lanes to dedicated bus lanes can increase road traffic congestion (Gaduh et al.,
2022), yet the TransJakarta network expansion we study here did not reduce road traffic lanes. The only
major change to BRT infrastructure in this period was the launch of corridor 13, which runs along an elevated
busway so did not reduce road traffic lanes.

4In typical discrete choice models such as logit, splitting a bus route into two identical routes with half
the original bus allocation is the source of an expected utility gain because the new routes have independent
idiosyncratic errors; this is the famous ‘red-bus, blue-bus’ problem discussed by McFadden (1974). We show
that the general version of our model, which appears in Daganzo (1979) under the name “negative exponential
distribution model,” does not have this issue.

5While it is possible to further embed the model into a destination-choice nest or in an urban general
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We estimate the model for the discretized Jakarta metropolitan area using 1km hexag-
onal grid cells. We use smartphone data to estimate commuting flows across all possible
combinations of these grid cells. We then use the model to compute predicted ridership
over each (o, d) pair and examine how it changes over time as the bus network changes, by
running the same reduced form analysis as in the actual data. This allows us to estimate
the preference and attention parameters that match the actual event-study estimates.

Using this approach, we find a high disutility for waiting time relative to time traveling
on the bus. Specifically, we estimate that travelers find wait time 2.4× more costly than
travel times for BRT, and 4.2× most costly for non-BRT. Commuters dislike bus options
that involve transfers due to the additional wait time and typically longer time on the bus.
However, there is no additional transfer penalty, above and beyond the wait time and time
on the bus costs. Finally, we find that commuters pay significantly less attention to bus
options with bus travel time more than 34%-44% longer than the quickest option in their
choice set.

What do these preferences mean for the optimal design of the network? In the third
part of the paper, we introduce a theoretical and computational framework that allows us
to characterize optimal networks, compare them with the current network, and perform
comparative statics with respect to structural model parameters.

We ask how the network of bus routes should be configured across the city and how the
existing set of buses should be allocated to these routes to maximize a utilitarian welfare
objective informed by our estimated demand model. This involves balancing tradeoffs across
reach (having enough bus stops to cover origins and destinations for which people would
like to travel), wait times (putting more buses on a given route), and the topology of the
network (which stations should be connected directly versus by transfer). We hold fixed
TransJakarta’s current BRT infrastructure, which allows for faster travel times along the 13
BRT corridors, but we allow routes to enter and exit the BRT corridors, to connect them in
new ways, and to travel on existing streets. We study this problem using realistic geography
of Jakarta at the levels of 2km-wide square grids.

Our problem displays divergent substitution and complementarity forces at the same
time, hence violating the type of complementarity property that enables the characterization
of optimal allocations in other settings (Jia, 2008; Arkolakis and Eckert, 2021). This is also
a very high-dimensional problem, and the number of possible configurations is extremely
large, making it difficult to identify the (generically unique) welfare-maximizing network.6

equilibrium model (Tsivanidis, 2022), the null reduced form effect on aggregate trips suggests that over the
period we study, the preferences we estimate over wait time, transfers, and travel time are not biased by
changes in aggregate trip patterns.

6With 418 grid cells and 1,536 possible edges, there are 21,536 configurations where each edge is either
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Therefore, we set up a slightly modified problem: the social planner chooses a network
N that maximizes utilitarian welfare W (N, θ) from our estimated demand model — average
expected utility for all commuters — plus an idiosyncratic shock ϵN for each possible network.
The shocks capture network-level factors that the social planner cares about, such as cost
shocks or benefits from certain networks, outside of our demand model. As such, in our
framework, the social planner has a discrete choice problem over the space of all possible
networks. A network with high model welfare carries a large probability of being chosen,
because small idiosyncratic shocks may tip the planner into preferring it. We parametrize
the problem as a multinomial logit with parameter β.

This approach allows us to transform a global optimization problem into a problem of
sampling from a large-scale multinomial logit distribution. Several algorithms based on the
Metropolis-Hastings algorithm have theoretical guarantees and good practical performance
in sampling from such distributions.7 We derive formulas for properties of optimal networks
and comparative statics. We can estimate these objects using their sample analogs. Our
framework is general and may be used in other settings where a social planner’s (or an
agent’s) problem is high-dimensional.8

Using this approach, we find that optimal networks, based on the preference parameters
that we estimated, are substantially more extensive than the actual network. For example,
we estimate that a typical optimal network should cover about 66 percent of all grid cells,
compared to 42 percent with the actual TransJakarta network. 91% of all trips by Jakarta
residents would have access to the bus network, compared to 73% in the current network.9

Bus frequency in the city center is slightly lower in the optimal network, so commuters in
those areas need to wait longer for a bus than in the current network. While our estimated
parameters indicate that commuters are highly sensitive to wait times, we find that the
current TransJakarta network nevertheless concentrates too many buses in the city center,
where wait times are already very short.

In our last exercise, we explore how certain characteristics of the estimated optimal
networks would change if preferences differed. For example, doubling the wait time cost
leads to more concentrated networks connecting only 23 percent of origin-destination pairs,

connected or not – i.e. about 10500 possibilities. This is a lower bound of just the route design problem, and
does not even account for the number of buses on each route.

7We use a version of the simulated annealing (SA) algorithm, which we run multiple times to obtain a
sample of networks drawn (asymptotically) from the planner’s distribution.

8While the details of the implementation of the sampling algorithm will be application-specific, the
theoretical framework can be applied to problems such as optimal spatial policy (Fajgelbaum and Gaubert,
2020), optimal transportation infrastructure Allen and Arkolakis (2022); Fajgelbaum and Schaal (2020), and
firms’ global sourcing decisions Antràs et al. (2017). The setting is appropriate when the welfare difference
(or ratios) can be computed for pairs of counterfactuals, for example, if exact hat methods are applicable.

9Our results do not suggest a tension between distributional and efficiency concerns in this setting.
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41% less than before. Increasing the transfer penalty by the equivalent of 15 minutes of wait
time increases the share of connected location pairs that have a direct connection from 12%
to 16%. This type of comparative static exercise connects micro parameters in the model to
macro properties of optimal bus networks, which helps uncover which parameters matter for
network design and to assess sensitivity of our results to the parameters to estimate.

Our project connects to several literatures. First, we build on classic questions in the
transportation economics literature: travel demand estimation and mode choice in partic-
ular (McFadden, 1974; Ben-Akiva et al., 1985), and increasing returns in public transport
(Mohring, 1972).10 We build on the literature investigating how commuters value trip at-
tributes, see e.g. Wardman (2004); Currie (2005); Abrantes and Wardman (2011) and Small
et al. (2007, page 53). Studies in this literature tend to focus on high-income countries
and often infer stated preferences from respondents’ choices between hypothetical alterna-
tives. In contrast, we estimate preferences using natural experiments. In that respect, our
study is closest to Kreindler (2023), which uses a field experiment to estimate the underlying
preference parameters required to calculate optimal congestion pricing in Bangalore, India.
Here, by contrast, we use a variety of real-world changes in the attractiveness of the network
given by different types of network expansion for identification. Our study is also related
to Buchholz et al. (2020) and Goldszmidt et al. (2020), both of which estimate the value of
wait time for taxis and ride-hail from choices made on ride-hail platforms in Europe and the
United States.11

Second, by embedding travel demand preferences into a model of optimal bus route
network design, our project also contributes to the growing trade-inspired literature that
tackles questions of how to design a transport network (Fajgelbaum and Schaal, 2020; Allen
and Arkolakis, 2022; Balboni, 2021; Santamaria, 2022; Alder, 2023). This literature has
so far focused on road infrastructure (typically inter-city), rather than urban transit.12 Our
detailed microdata allows us to estimate fine parameters that are usually hard to incorporate
in these studies, and shows how they are related to features of optimal networks.

Our paper is also related to the literature on the impact of transit systems in LMIC.
Gaduh et al. (2022) studies the impact of the initial launch of the TransJakarta system in
2002 to show that at that point in time, the system had no impacts on public transport use
but the conversion of road lanes into dedicated lanes for the BRT network worsened road

10See also Coulombel and Monchambert (2019) for evidence on dis-economies of scale.
11Hörcher et al. (2017) estimate subway crowding costs in Hong Kong with a revealed preferences approach.
12Fajgelbaum and Schaal (2020) study a neoclassical trade model where the planner’s problem is globally

concave. Allen and Arkolakis (2022) study a tractable general equilibrium model with routing and congestion.
Balboni (2021) and Santamaria (2022) compare different road investment plans in dynamic settings. Alder
(2023) introduces a heuristic algorithm for finding the globally optimal highway network in the context of a
quantitative trade model for India.
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traffic congestion. Majid et al. (2018) study the impact of a new BRT transit line in Lahore,
Pakistan. Tsivanidis (2022), Zárate (2023), and Balboni et al. (2021) measure the impact
of the BRT systems in Bogotá, Mexico City, and Dar Es Salaam, respectively, and quantify
general equilibrium effects through the lens of quantitative urban models. Tsivanidis, for
example, focuses on estimating the welfare and inequality effects of the system and how
it affects the organization of the city. All these papers take the public transport system
design as given. By contrast, we tackle the complementary problem, focusing on estimating
underlying preference parameters, and solving for the optimal system design.

Meta-heuristic algorithms, including the simulated annealing algorithm that we use here,
have been used extensively in the transportation and operations research literatures to ap-
proximate optimal designs in urban transit network design problems (Wei and Machemehl,
2006; Iliopoulou et al., 2019). Our contribution is to link in an asymptotic sense the output
of such algorithms to a social planner’s discrete choice problem over all possible networks.
Instead of approximating an optimal network, we sample multiple networks, which allows us
to estimate optimal network characteristics and comparative statics.13

The rest of this paper is organized as follows. Section 2 describes the TransJakarta
bus network, its expansions, and our data. Section 3 presents the reduced-form event-
study results that show how ridership responds to new routes and improved bus frequency.
Section 4 introduces the model, describes how we estimate the model using the reduced form
moments, and presents estimation results. Section 5 explores the implications for optimal
network design.

2 Setting and Data

2.1 The TransJakarta Bus Network

Setting Description. TransJakarta operates an integrated bus system serving the cen-
tral urban districts in Greater Jakarta — a metropolitan area of about 18 million people.
Its routes are concentrated primarily within the city of Jakarta, though some extend to
surrounding districts. Established in 2004, TransJakarta serves hundreds of thousands of
passengers daily, with daily ridership peaking around 1 million in early 2020.

As of August 2019, TransJakarta has over 139 bus routes, which are a mix of Bus Rapid
Transit (BRT) and non-BRT routes. BRT routes operate on dedicated bus lanes along
designated stations. Passengers pay at turnstiles to enter the BRT station and board the
bus. It has a network length of more than 120 miles of BRT corridors, the longest such

13Daganzo (2010), Fielbaum et al. (2016) characterize optimal transit networks in idealized environments.
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system in the world (Institute for Transportation and Development Policy, 2019). Non-BRT
feeder routes operate partially on normal city streets, and partially along the BRT corridors,
where they also stop in BRT stations. These non-BRT routes connect locations that are
further away from the BRT system.

TransJakarta costs a flat fare of IDR 3,500 (USD 0.25) per trip, regardless of distance.
Payment is collected by tap-in smart cards, either at BRT stations or through fare machines
on non-BRT busses; tap-out is enforced at a small number of BRT stations as well.14 Free
transfers are allowed at BRT stations.

TransJakarta is the primary public rapid transit system in the city. A commuter rail
system (KRL CommuterLine) with about 1 million ridership serves outlying areas for longer
trips that rarely overlap with TransJakarta trips. In 2019, a single 16 km subway line was
opened to serve about 80,000 riders per day. In 2018, privately provided shared transport,
using minibuses, accounted for 2.9% of all trips in the larger Jabodetabek region (JUTPI2,
2019). The primary alternative to TransJakarta is private transport, consisting of a mix of
motorcycles, private cars, motorcycle taxis (ojek), and automobile taxis.

TransJakarta Network Expansions. We study the large expansion of the TransJakarta
network, which added more than 93 BRT and non-BRT routes between January 2016 and
February 2020. Only one entirely new BRT corridor was launched during this period.15 The
newly launched BRT routes run along existing BRT corridors, sometimes connecting two
corridors or running an express route on certain sections. The new non-BRT feeder routes
stop both in some BRT stations as well as in roadside non-BRT bus stops, connecting one
or multiple BRT corridors to other areas of the city.

The number of operating buses more than doubled during this period, from about 700
to more than 1,600. Figure 1 shows the expansion of the system. These expansions — for
both BRT and non-BRT routes — took place at different times throughout the city.

New lines were launched based on a mix of external constraints and discretion. All non-
BRT route launches were chosen from a list of routes that were pre-approved in 2016 by
the Jakarta transportation department (Dishub). For BRT routes, TransJakarta created
new routes by connecting existing BRT stations along the existing BRT dedicated lanes.
For both BRT and non-BRT, TransJakarta chose routes and launch periods based on new
bus fleet delivery dates, bus availability based on bus-operator contracts, inputs from field
reports, and other factors. Appendix Table A.2 shows that the order of BRT route launch
is balanced with respect to the geographic characteristics of the routes.

14Cash payments are allowed on non-BRT busses, accounting for around half of all transactions in 2019.
15Corridor 13 is an elevated busway, thereby not affecting the number of lanes available to road traffic.
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2.2 Data

We use three different datasets: TransJakarta ridership data from administrative data
on TransJakarta’s smart card transactions; origin-destination aggregate-trip flows data
from anonymized smartphone location data; and bus locations data, which we obtain by
processing detailed GPS data on every TransJakarta bus throughout our period.

We focus on the central urban districts of Greater Jakarta.16 We use consistently defined
geographical environments throughout our analysis. We divide space into identical grid
cells and aggregate stations at the grid cells level, and trips at the grid cell pair level.17

Throughout the reduced form and demand estimation analysis, We use a regular hexagonal
tiling with 1766 grid cells where adjacent grid-cell centroids are 1,000 meters apart, and then
show robustness to using 500-meter and 2000-meter square grid cells. For the optimization
section, we use 2,000-meter square grid cells to reduce the problem’s dimensionality. We
aggregate outcomes (e.g. ridership, trips, bus supply) at the weekday or work-week level,
focusing on the 5AM to 10PM interval.

Ridership Data. We use the administrative ridership data that is captured electronically
by smart cards to construct a highly granular TransJakarta origin-destination (o, d) ridership
matrix at each point in time since 2016 (since 2017 for non-BRT). In BRT stations, passengers
tap smart cards at turnstiles to enter the boarding area. In 36 percent of BRT stations,
passengers also tap smart cards upon exit. In non-BRT bus stops, passengers board the bus
directly from the street and tap to pay for the bus ticket upon boarding. We observe the
time of each tap, as well as an anonymized identifier for the smart card used, which allows
us to link transactions from the same smart card over time.18

While we observe each passenger’s trip origins, we only observe destinations (dit) for the
trips that end at stations where tap-out is enforced. In all other cases, we construct a proxy
destination station based on an algorithm that uses the origin station of the next trip for the
same smart card, or another frequent origin for that card. We validate this algorithm using
the existing tap-out data.19 We describe the algorithm and ridership data cleaning process
and coverage in Appendix A.3.4.

16This consists of the Special Capital Region of Jakarta (DKI Jakarta) and all the surrounding urban
districts: Tangerang, South Tangerang, Depok, and Bekasi (see Figure A.1).

17We collapse the TransJakarta network to the level of grid cells. For transfer options, we consider that
origin o and destination d are connected by a transfer option by routes r1 and r2 if these two routes intersect
in an actual station.

18Individuals can purchase new smart cards, but do so infrequently. The median smart card in our data
is active for over 4 months, and the median tap belongs to a smart card that is active for over 20 months.

19For the set of destination stations where we have actual exit transactions, bivariate regressions of imputed
and actual daily ridership shares have R2 = 0.85 (Appendix Figure A.19).
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Aggregate Trip Flows. We augment our administrative data with anonymized historical
smartphone location data to measure overall trip behavior, regardless of whether a given
commuter uses the TransJakarta system or not. We have daily smartphone location data
from March 2018 through March 15, 2020 from Veraset, a private data provider. These
data cover 35 million weekday trips that belong to 2.3 million unique devices in our study
area. (For reference, our study area had 14 million individuals over 15 years old at the 2020
census.) We use these data to: (1) create a panel of trip flows separately for each week in
the data as an outcome variable when studying the impact of the network’s expansion, and
(2) construct a cross-section of typical (o, d) trip flows throughout the period in order to
compute choice probabilities for using TransJakarta. See Appendix A.3.5 for details.

The smartphone location data captures rich travel patterns within Jakarta (Figure ??).
Figure A.21 shows that the Veraset data is broadly representative across areas with different
levels of poverty and density.

Bus Location and Allocation, and Network Expansion. We have data on the
planned and realized daily bus allocations for each route, as well as exact GPS locations
for every bus every five to ten seconds for the near-universe of routes. These data cover
approximately 1,800 busses and 16,000 bus trips per day since January 2017. We process
this raw GPS data to compute median bus travel times on all routes, between every origin
and destination stations, and to measure the empirical distribution of wait time for each
route. See Appendix A.3.2 and A.3.3.

To reconstruct the TransJakarta network at different points in time, we combine data
from TransJakarta and data from a mobility planning app available in Jakarta during the
study period. We cross-check launch dates inferred from bus allocation data with route- and
date-specific TransJakarta ridership data, as well as directly with TransJakarta staff.

3 Reduced Form Results: the Impact of Service Quality

We begin by estimating the ‘reduced form’ impacts of improved service quality on
TransJakarta ridership and on all trips (measured using smartphone location data). We
use the fact that the launch of a new bus route changes different dimensions of how attrac-
tive it is to take TransJakarta for different (o, d) pairs, based on how it affects the choice set
of direct and transfer bus routes between those locations.

We focus on three types of ‘events’ induced by new route launches. The first two capture
the launches of the first direct route between two locations that are already connected by
transfer. In Event 1, the new direct route is not faster than the fastest existing transfer
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connection, in terms of total time on the bus. In Event 2, the new direct route is faster.
Event 3 captures the addition of busses between two already directly connected locations
because the new route overlaps with the existing direct route(s) between o and d. This
increases the bus arrival rate and lowers wait times for those traveling from o to d. We
examine these event types separately for BRT and non-BRT connections.

3.1 Estimation Framework

For each of the three event types described above, for both BRT (E ∈ {1B, 2B, 3B})
and non-BRT network expansions, (E ∈ {1N, 2N, 3N}), we estimate the following equation:

ln(EYodt) = αEPostEodt + αE
−10L

E
≤−10,odt + αE

10L
E
≥10,odt + µE

od + νEot + ξEdt + εEodt (1)

Our dataset is at the origin (o) × destination (d) × week (t) level, so we include all two-
way fixed effects. Specifically, µE

od are origin×destination fixed effects — i.e. fixed effects
for every combination of start and end grid cell — and νEot and ξEdt are origin×time and
destination×time fixed effects. These fixed effects flexibly capture differences in ridership
across origin-destination parts, as well as arbitrary time-related shocks for each origin and
destination.

The key variable of interest is PostEodt, a dummy variable for the event having taken place
on the od route in the previous 10 months.20 We control for LE

≤−10,odt and LE
≥10,odt, which are

dummies for whether an event between o and d takes place 10 or more months in the future,
and in the past, respectively. The coefficient αE in equation 1 thus captures the overall effect
of an event of type E for the pair (o, d) in the first 10 months after it occurs, relative to the
9 months prior to the event.

We estimate (1) using robust Poisson Pseudo Maximum Likelihood (PPML). We cluster
standard errors two-way by both origin and destination, which allows for arbitrary serial
correlation over time for each origin and each destination, as well as arbitrary correlation
among destinations for a given origin, and vice-versa (Cameron et al., 2011).

The sample includes only odt observations that are connected at time t within the Trans-
Jakarta network, implying that both o and d contain TransJakarta stations before each type
of event. The sample of pairs od for event type E is restricted to all origins treated at least
once (PostEod′t′ = 1 for some d′, t′) and to all destinations treated at least once. Most of the
origin-destination pairs included in the sample are never treated. (For example, for BRT
event type 1 this number is 78.4 percent).21

20For Event 3, we focus on the first event if there are multiple events for a given o, d pair.
21The fact that most of our od pairs are never treated largely alleviates the class of problems with two-way
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We use two outcome variables Yodt. First, we examine the total TransJakarta ridership
between grid cells o and d during week t, summing up over all station pairs in o and d.
Second, we also measure impact on all trips between o and d in week t, computed based on
smartphone location data.

We use the full time period of data that we have for each type of event, but since the
BRT, non-BRT, and smartphone trip data all begin on different dates, the data start at
different times.22 All data end in mid-March 2020, prior to the COVID-pandemic shutdown.

For each of the events described below, we present the overall effects from estimating
the corresponding version of equation 1. We also present event study graphs, where we add
month-by-month leads and lags of the key explanatory variables.

In Events 1 and 2, a route launch creates the first direct connection between o and d,
a location pair that already has a transfer connection. The two event types differ only in
terms of whether the new direct route has faster travel time on the bus compared to the
fastest pre-existing (transfer) option.

In Event 3, grid-cell pairs o and d that are already directly connected get more busses
from a new route because it overlaps with the existing route for the portion between o and
d. Specifically, Post3odt is a dummy for the first event of an additional direct route launched
between o and d taking place, in the ten months before week t.

3.2 “First Stage” Impacts on Travel and Wait Times

We first study how the three different events affect the attractiveness of riding the
TransJakarta network from o to d (Table 1).

We first estimate the impact on the log minimum travel time on the bus between o and
d. We use the bus GPS data to measure bus travel times, and at each time t between 2016
and 2020 we take the minimum over all available bus options (direct or single-transfer). This
measure captures the pure travel time on the bus — i.e. it does not include any time spent
waiting for a bus to arrive or any time waiting for a connecting bus.

Adding a new direct line between o and d reduces travel time, but only when the new line
is faster than the existing transfer connection (Event 2), yielding an average effect of about
0.29 log points with a standard error of 0.027 (column 2). While the fact that travel time
reductions are limited to Event 2 is, of course, mechanical to the way we define the events,

fixed effects specifications that have been highlighted recently (see, e.g., De Chaisemartin and D’Haultfoeuille
2022), which are primarily a concern when using previously-treated observations as a comparison group.

22For BRT events, the sample comprises January 2016 to mid-March 2020. For non-BRT events, we further
restrict the sample to the period after mid-January 2017, when our non-BRT data begins. When we use
smartphone trips as an outcome variable, the time periods span from March 2018 to March 2020. We always
exclude May-July 2018 due to missing BRT ridership data.
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we show that the differences are quantitatively large and statistically quite meaningful.23

Event 3 has a very small effect on log travel time.
Next, we examine the log number of busses arriving per hour at the origin, over all the

direct and transfer options that connect the origin and destination. This is a proxy of waiting
times at the origin station. Event 3 increases the bus arrival rate by 0.32 log points (Table
1, column 6). Events 1 and 2 have small effects on the bus arrival rates at the origin. Note
that these effects do not capture the reduction in wait time for transfer connections.

Results for non-BRT network expansion are broadly similar and typically larger in magni-
tude (Table 1, panel B). Importantly, baseline bus arrival rates for treated origin-destination
pairs is 2–4 times lower for non-BRT routes compared to BRT (columns 4–6). This means
that the absolute reduction in wait time is much larger for non-BRT events compared to
BRT events. Results are qualitatively similar when using 500-meter or 2000-meter square
grids as the base geography (Tables A.3 and A.4).

The key point from Table 1 is that the three events affect the desirability of using the
bus system in different ways: adding a new and faster direct line reduces travel time and
reduces waiting times, in addition to eliminating the need to transfer, whereas additional
busses mainly reduces waiting times.24 This variation will allow us to identify preference
parameters in Section 4.

3.3 The Impact of New Route Events on Bus Ridership

Travel Times and Direct Connections: Impact of New Routes. The impacts of
the three events on bus ridership, estimated using equation (1), are presented in columns
7–9 in Table 1 for BRT and non-BRT. Figure 2 shows event-study versions of each of these
equations with monthly lags and leads from the date of the event.

Ridership is highly responsive to improvements in service quality. On average, adding
an additional direct BRT route between o and d without a travel time improvement (Event
1) leads to an increase in ridership of 0.16 log points over the 10 months following the
introduction of the new route (Table 1, column 7). When the new direct route also decreases
travel time (Event 2), which column 2 showed led to a 0.29 log point reduction in travel
time, this leads to an increase in ridership of 0.27 log points.

23The first type of event in fact has a small positive effect on log travel time. This is to some degree
mechanical based on how we separate events 1 and 2. New direct routes are categorized under event 2 if the
new direct route’s travel time is strictly smaller than that of existing transfer routes, and event 1 otherwise.

24Both “first stage” variables are imperfect proxies for the attributes of interest. For example, the second
outcome counts bus arrivals even for transfer options between o and d that have very long travel time, which
in practice will be valued less by commuters. The minimum travel time between o and d shown in Table 1
might depend on a very infrequent bus line. The model in section 4 will lay out how commuters value these
attributes jointly for all bus options in their choice set.
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The event-study version of equation (1), shown in Figure 2, Panel (a), left column, shows
no pre-trends before the first and second events, and a discrete uptick in ridership at the
time of the new route launch. The increase is notably higher for Event 2. The event-study
graphs also show that riders take some period to adjust to the new route.

The non-BRT results paint a qualitatively similar picture of the impact of bus service
improvements (right-side of Figure 2 and Table 1, Panel B). While for all events, the point
estimates are larger than those for BRT, the implied level effects are much more similar.
For Event 1, the BRT effect implies that a treated origin, destination pair has 19.1 (=
111.3 · (e0.158 − 1)) more riders per week on average in the post period. This compares with
an effect of 33.8 additional riders per week for non-BRT Event 1. For Event 2, the BRT and
non-BRT level effects are 23.6 and 20.6 additional riders per week, respectively.

Wait Times and the “Mohring Effect.” We next investigate the addition of direct
busses between o to d caused by the launch of a new route that overlaps with existing direct
routes (Event 3). Adding additional busses leads to a 0.09 log point increase in ridership
(Table 1, column 9). Figure 2, Panel (b) shows that there is a large, discrete uptick in
ridership exactly when the new route is introduced.

Given the first-stage results discussed above, we can interpret Event 3 as being almost
entirely about the effect of wait times on ridership. Thus, combining the estimates from
columns 6 and 9 of Table 1, we get an implied elasticity of ridership with respect to wait
times of -0.29, i.e. a 10 percent decrease in wait times leads to a 2.9 percent increase in
ridership.

These estimates speak to the so-called ‘Mohring effect.’ Mohring (1972) argued that
if demand for public transit is responsive to wait times, then there is an externality from
riding the bus — more bus ridership allows the bus operator to add more busses to the route,
decreasing wait times for other riders. Our estimates show that, indeed, ridership is sensitive
to bus frequency, suggesting that this effect operates in this case and that the optimal public
transit subsidy is likely positive for this reason.

An extreme form of the Mohring effect is when the elasticity of ridership with respect
to wait times is greater than 1 in absolute value over some range. In this case, the planner
may have multiple local optimal levels of service frequency in ridership: a low-ridership,
high-wait-time regime, and a high-ridership, low-wait-time regime. For BRT, we can reject
an elasticity of −1 at conventional significance levels.

For non-BRT routes, however, we find a much larger implied elasticity of ridership with
respect to wait times, of −1.05 (= 0.450/0.425, Table 1, panel B). This suggests that adding
more non-BRT frequency on some non-BRT routes could increase ridership enough to main-
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tain (or even increase) average ridership per bus.
Similar to the first two types of events, the level impacts of Event 3 are similar for BRT

and non-BRT. Specifically, the BRT effect implies that a treated origin, destination pair has
20.3 (= 210.4 · (e0.092 − 1)) additional riders per week on average in the post period, relative
to an effect size of 14.77 for non-BRT.

Alternative Aggregation Levels. One possible concern is that our results are capturing
displacement effects within the TransJakarta network. This would be the case if, for example,
some commuters would switch from using a certain origin bus station located in a grid cell
o′ to one of the treated origin grid cells o after an event.

To examine this, we consider different aggregation levels, where we re-estimate all our
results using both 500-meter squares (smaller) and 2000-meter squares (larger). If substi-
tution was a central concern, we would find much larger effects when we use smaller units
of aggregation than when we use larger units. Figure A.5 compares the magnitude of co-
efficients for all three events, separately for BRT and non-BRT, placing estimated Postodt

coefficients and their 95% confidence intervals side by side.25 There is no systematic pattern
of decreasing coefficients and confidence intervals overlap significantly in all graphs. This
implies that our treatment effects are not significantly contaminated by displacement effects.

Heterogeneity Based on Poverty. One important question is whether preference pa-
rameters depend on local poverty levels. Table A.6 shows the impact of all six events on
bus ridership when we include interactions for whether the origin grid cell has above-median
poverty rate in the estimation sample; these regressions also control for interactions with
log population. We use poverty and population data at the kelurahan (urban villages) from
SMERU (2014) and the PODES 2010 village survey, respectively. The results show no clear
patterns based on income levels. It is important to note the lack of heterogeneity here when
thinking about optimal network design.

3.4 Impacts on Overall Trips

Having shown how the TransJakarta ridership responds to these events, we next turn
to the Veraset smartphone-based trip data to examine whether aggregate trip volume — re-
gardless of whether passengers take TransJakarta or not — is responsive to the TransJakarta
network expansions.

We re-estimate equation (1) for the total number of trips from o to d at time t from
Veraset (Table 2 and Figure 3). Our measure of aggregate trips is derived from individual-

25The detailed 500 and 2000 meter results are shown in Tables A.3 and A.4 and Figures A.2 and A.3.

15



level smartphone traces, and it covers all types of trips, not only commuting trips between
home and work. Since our Veraset data only begins in March 2018, for comparability we
also re-estimate the effects on TransJakarta ridership for the same time period.

The key result is that we do not see positive and significant impacts of the three types of
events on aggregate travel volumes between pairs of 1km hexagon locations. For example,
for BRT Event 1, we find a coefficient of −0.008 with a standard error of 0.051 (column
10). This allows us to reject at the 95% level a positive impact of approximately +0.091,
compared to the precise 0.11 effect on bus ridership in the same sample (column 7). Thus, we
can rule out moderately positive impacts on all smartphone location trips. Figure 3 shows
no clear patterns before and after the events. We find qualitatively similar results for most
event types, and they are robust to analyzing the data at the level of smaller, 500-meter
square grids (Table A.5).

These results suggest that our main results on bus ridership reflect an immediate and
large mode substitution towards TransJakarta, without an increase in total trips between
the affected origin-destination pairs. Of course, we cannot rule out that over a longer time
period compared to the 10 months we focus on here, the pattern of trips will also change.
However, based on these results, in our model we will focus on mode choice and hold (origin
and) destination trip choices fixed.

Overall, the reduced form results suggest that riders are responsive to the three dimen-
sions of service quality we consider: wait times, on-the-bus ride times, and direct connections.
We do not find evidence that these changes affect the aggregate volume of trips. Since the
events we study affect multiple dimensions of service quality, we next estimate a model of
commuter demand, which allows us to jointly infer the underlying preference parameters
that best match the responsiveness we observe in the data.

4 Model and Estimation

We now set up a model of demand for public transportation that describes how commuters
choose bus routes within the TransJakarta network, and at a higher level, whether they use
the TransJakarta network or an “outside option” that captures private transport modes.26 We
consider the problem of a commuter traveling between an origin grid cell and a destination
grid cell who chooses between direct bus routes that link the origin and destination grid cells

26While is it possible to further embed these decisions into a model of destination choice, or a general
equilibrium urban equilibrium model (Tsivanidis, 2022), given our null results on aggregate trips in this
context, we hold these decisions fixed in the model.

16



(we assume one bus station per grid cell), single-transfer bus connections, and an outside
option. The exact choice set for bus options will depend on the state of the public transport
network at a point in time.

How do commuters decide which bus routes to take? The core of our model is a new
formulation for how commuters choose routes in a transit network. The model highlights the
importance of wait times, which affect decisions in two key ways. First, overlapping routes
between an origin and a destination effectively decrease wait times, because the traveler can
take the first bus that arrives among these bus routes. (This is exactly the mechanism that
we study empirically in Event 3.) Second, travelers sometimes forego short wait times for
other route characteristics. For example, a traveler may decide to not take the first bus that
arrives at the station if this option involves a transfer and instead wait longer for a direct
(and shorter) route.

In the model, a traveler’s utility from a given option is additive in wait times and several
deterministic factors: travel time and the necessity to make a transfer. For each route and
station, bus arrivals follow a Poisson arrival process. Commuters draw a vector of random
wait times for the different routes in their choice set. This wait-time randomness induces
idiosyncratic heterogeneity in route choices.

Our network routing model has four desirable properties. First, the model is invariant
to aggregation of identical routes. Second, we confirm using our bus GPS data that the
distribution of wait times is approximately exponential, as assumed in our model (Appendix
Figure A.18). Third, our model has realistic predictions: overlapping routes lead to shorter
wait times, and commuters sometimes choose to wait for a later bus arrival in order to
use a better route. Fourth, we obtain tractable expressions for expected utility and choice
probabilities.

We add to this baseline formulation the possibility that commuters are partly inattentive
to certain options in their choice set. We assume that a route’s arrival rate may be attenuated
by an attention factor that depends on the travel time on the bus of options using that
route, relative to the minimum travel time on the bus in the choice set. The model with full
attention is a special case.

In the upper nest, commuters make a logit choice between using the private mode or the
TransJakarta network, where the benefit of the latter is given by the risk-neutral expected
utility over wait times of choosing from among available TransJakarta options. The private
option in the model includes private vehicles, such as motorcycles, taxis, motorcycle taxis,
and ride-hail apps, as well as other types of shared transport, such as mini-buses outside the
TransJakarta network. We assume that these modes are infinitely elastic to meet demand
at a given cost, but their prices and attributes do not vary over time. We also assume that
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the TransJakarta network does not affect road traffic congestion.27

We estimate the model parameters leveraging the TransJakarta network expansion, fo-
cusing on commuters’ values for travel time, wait time, and transfers, as well as attention
parameters, which we allow to differ for BRT and non-BRT routes. We use a classical
minimum distance approach whereby we search for the parameter vector that allows the
model-predicted ridership to replicate the reduced form analysis documented above. In ad-
dition to the six moments (three events for BRT and non-BRT), we also use a seventh
moment, described below, to help pin down the attention parameters.

4.1 Bus Route Choice Model

A Random Utility Model with Waiting Times. The core part of our model is a
flexible, static discrete choice over bus options, where idiosyncratic heterogeneity is given
by exponentially distributed random wait times. Daganzo (1979) calls this the “negative
exponential distribution model.” We first describe the general structure and key properties
of the model, before delving into the details that are specific to bus network routing.

Consider an agent making a static discrete choice among a finite set of options k ∈ K.
Each option has a deterministic utility vk and a random component wk ≥ 0, which measures
wait time. The wait time for each option is governed by an independent Poisson process
with arrival rate λk, which can differ by option. This means that the wait time wk is
drawn independently from an exponential distribution Pr(wk > w) = exp(−λrw). The
agent observes the wait times for all options and picks the option with the highest combined
utility uk = vk − αwaitwk, where αwait governs the agent’s preferences over wait times.

We incorporate partial inattention by assuming that the agent notices each arrival from
option k with independent probability pk. In other words, with probability 1− pk the agent
fails to notice the first arrival for option k. This leads to an “effective” arrival rate for option
k of λ̃k = ϕ(pk)λk with 0 ≤ ϕ(p) ≤ 1 (see Appendix A.5).

This model has a convenient invariance property: it is unchanged when options that have
the same indirect utility are combined into a single option with the sum of arrival rates.

Proposition 1. Assume that the choice set contains two options k = 1, 2 with v1 = v2 and
arrival rates λ1 and λ2. The model where options 1 and 2 are replaced by a single option 3
with v3 = v1 = v2 and λ3 = λ1 + λ2 is isomorphic to the original model in terms of choice
probabilities and expected utility.

27BRT routes run on dedicated lanes separate from other road traffic, and new BRT routes during our
study period were launched along existing BRT corridors, without changes in the supply of lanes for other
road traffic. We assume that non-BRT routes did not affect road traffic congestion due to their low frequency
and relatively low mode share.
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Proof. This follows from the fact that the sum of two independent Poisson count processes
with arrival rates λ1 and λ2 is a Poisson count process with arrival rate λ1 + λ2.

This property implies that the demand model is unchanged if a route is split into two
identical routes, with the total number of buses (which, as we will see, determine arrival
rates) split between the two new routes. In other words, our model does not feature the ‘red
bus, blue bus’ problem discussed by McFadden in the context of the multinomial logit and
other random utility models. This will prove to be an attractive invariance property for the
planner’s optimization problem that we will later set up in section 5.

Choice probabilities and expected utility are as follows:

Proposition 2. Assume that options are ranked v1 < v2 < · · · < vN . The probability πk to
choose option k is given by

λ−1
k πk =

k∑
i=1

e−Mi
eviα

−1
waitΛi − evi−1α

−1
waitΛi

Λi

,

where Λi =
∑N

ℓ=i λℓ and Mi =
∑N

ℓ=i vℓλℓ, and v0 = −∞ by convention. Expected utility is

Emax
k
uk = vN − πN

αwait

λN
,

where πN is the choice probability of the option with the highest deterministic utility.

The proof uses algebraic manipulations of the exponential distribution (Appendix A.6).
The first part of this result ensures that computing choice probabilities is computationally
tractable. The second part shows that expected utility has a particularly simple expression.
Note that if the commuter only had the option N in their choice set, expected utility would
be vN − αwait/λN . In general, the influence of other options k ̸= N on expected utility is
summarized by the probability πN to choose the top option.

Bus Route Choice Model Setup. The travel demand model in the context of the
TransJakarta network is as follows. Consider a commuter i traveling from a given origin
grid cell o to a destination grid cell d. They have a choice set with a finite number of bus
options k ∈ Modt, where the choice set depends on the TransJakarta network at calendar
date t, which in our application will range between 2016 and 2020. Each option has a utility
level uk = vk − αwaitT

wait
k , where vk is the deterministic component that depends on char-

acteristics such as travel time and transfer terms (in cases where the bus option k involves
a transfer), and Twait

k is the wait time at the origin determined by a Poisson arrival process
that we describe in the next section.
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The bus route choice set Modt contains all direct and single-transfer bus connections
between o and d available at t. The bus connections must start in the origin grid cell o, end
in the destination grid cell d, and transfer in an intermediate TransJakarta station m.

The utility for a direct public transit option k is:

uk = −αtimeT
time
k︸ ︷︷ ︸

vk

−αwaitT
wait
k (2)

where T time
k and Twait

k are travel time on the bus and wait time, respectively.
If passengers decide to take a transfer option k ∈ Modt that includes connecting in an

intermediate station, we assume that they get the utility from the first leg k1 of the route
up to the intermediate station, and the expected utility from the second leg of the route,
taking expectations over the best direct option k2 connecting the intermediate station to the
destination:

uk = −αtimeT
time
k1

+ Emax
k2

[
−αtimeT

time
k2

− αwaitT
wait
k2

]
+ µtransfer︸ ︷︷ ︸

vk

−αwaitT
wait
k1

. (3)

We assume that second-leg wait times are not known at the time when the commuter
makes the initial decision, so the consumer needs to take expectations over the best route
k2 that they will take from the intermediate station to the destination. µtransfer captures
the pure transfer penalty of taking a transfer above and beyond the travel time and the
(expected) utility for the second leg.

Preference parameters are allowed to differ by BRT/non-BRT. For clarity, we do not
track this distinction in notation now and discuss it when we set up the model’s estimation.

We assume the following timing for the commuter’s decision. Conditional on deciding to
use the TransJakarta network, the commuter goes to the (unique) station in her origin grid
o and observes wait times Twait

k for all possible routes for options k in her choice set. For
transfer routes, she observes the wait time for the first leg and forms expectations about the
wait time for the second leg. She then chooses the bus option that maximizes utility.28

Poisson Bus Arrival Process and Exponential Wait Time Distributions. Busses
on a route r arrive at the origin grid o according to a Poisson count process with arrival
rate λr. The arrival rate is given by λr = Nr/RTTr, the ratio between the number of busses
allocated to that route, and the return travel time needed for one bus to make a full loop on

28During our study period, TransJakarta posted actual arrival times at each BRT station – see Figure
A.17 for an example. Users could also look up wait times from home using an app, but these may change
between the time the user leaves home and arrives at the station.
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route r.29 We assume that the Poisson processes for different routes are independent.
Agents in the model are “non-planning” in that they cannot synchronize their trip de-

parture time with a specific bus given an arrival schedule. This is realistic for TransJakarta,
which does not publish a schedule and where very infrequent service is rare. Under this
assumption, the wait time at o for the next bus from a given route r is exponentially dis-
tributed. Using bus GPS data, we show that exponentially distributed wait times are a
good approximation for small and moderate wait times (Figure A.18, panels A and B). The
exponential distribution in the model slightly over-estimates long wait times, suggesting that
our estimate of αwait captures steeper-than-linear costs for large wait times.

The mean and variance of wait time for a route follow a tight relationship, which is similar
for BRT and non-BRT routes (Figure A.18, panel C). Without independent variation in these
moments, we note that our estimate of αwait will capture the combined preference for the
wait time distribution.

Large Choice Sets and Partial Inattention. The model outlined so far assumes that
commuters consider all possible bus route combinations. However, the TransJakarta bus
network is sufficiently interconnected and complex that some choice sets are very large.
While the median choice set has four bus options, a quarter of origin-destination pairs have
choice sets with at least 14 options, and 10 percent of choice sets have at least 28 bus options.

Many choice set options — those with very long travel times — are ex-ante unattractive.
For the choice set at the 75th percentile, the slowest option in the choice set (by total travel
time on bus) is 2.8 times slower than the fastest option in the choice set. For 10 percent of
choice sets, this ratio is at least 3.6.

We allow commuters in the model to be partially inattentive to options in their choice
set that have a long bus travel time. This is a simple heuristic for reducing the size of the
consideration set, bearing some similarity to models of rational inattention (Gabaix, 2019).30

To capture partial inattention, we consider for each route an effective arrival rate λ̃rodt =
λr · ϕrodt, where ϕrodt ∈ [0, 1]. This is equivalent to assuming that for any bus on route k,
the commuter does not observe it with some probability, independently of other buses. Note
that under this model, the commuter still draws a waiting time for each route, but this may
be longer for some routes. In our parametrization, the ϕrodt terms will be close to zero or
one, so essentially, the commuter will either fully ignore or pay full attention to the route.

We parameterize the attention factor as a function of travel time on the bus. Specifically,
let Tmin

rodt denote the shortest travel time on the bus among bus options that include route r,
29Bus allocation and bus speeds are mostly constant throughout the day (Appendix A.3.2).
30Larcom et al. (2017) use a short-term disruption due to a strike to show that some commuters in London

are using suboptimal routes.
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and Tmin
odt the shortest time in the entire choice set between o and d at time t. We define

ϕrodt = ϕ
(Tmin

rodt

Tmin
odt

)
,

where ϕ(Tratio) =
exp(γ(η−Tratio))

1+exp(γ(η−Tratio))
has a decreasing logistic shape in the travel time ratio Tratio.

We will estimate the parameter η, which is an attention cutoff. Commuters pay significantly
less attention when the travel time ratio is above η, and this function approaches a step
function around η as the shape parameter γ grows to infinity.

Partial inattention leads to important differences in how commuters respond to changes
in the TransJakarta network. Consider the addition of a faster route on top of a set of
existing bus options, as in Event 2. With full attention, the new route can significantly
decrease the waiting time at the origin, which increases bus network ridership. This effect is
particularly strong when time on the bus is not very costly (low αtime) because in that case,
all routes are good substitutes for each other. With partial inattention, the commuter will
pay less attention to pre-existing bus options after the new faster route is launched, because
of the travel time difference. Partial inattention can rationalize low responsiveness to this
type of change in the choice set.

4.2 The Logit Choice Between Bus Network and Private Option

At the higher decision nest, a commuter traveling between o and d first decides between
using the TransJakarta network or using an outside option, a catch-all for private modes
(private motorcycle, for hire motorcycles, car, other private minibusses, etc.). The utilities
for the two options for a trip i between o and d at time t are:

ubus
it =

(
E max

k∈Modt

uk

)
︸ ︷︷ ︸

vbus
odt

+ϵbus
it (4)

uprivate
it = ζprivate

od + ϵprivate
it

where the term in large brackets captures expected utility over different realizations of wait
time vectors. The term ζprivate

od captures all time-invariant factors that make the private
option more attractive for that specific origin-destination pair.

The terms ϵbus
it and ϵprivate

it are Gumbel-distributed error terms with parameter β, giving
rise to logit probabilities.
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4.3 Model Estimation

Our estimation strategy is based on finding the vector of preference parameters that
allows the model to match the reduced form results documented in section 3. We estimate

θ = (αtime, α
BRT
wait , µ

BRT
transfer, η

BRT, αnon-BRT
wait , µnon-BRT

transfer , η
non-BRT).

That is, we estimate a single cost of travel time on the bus, and separate BRT and non-BRT
costs of waiting, transfer shifters, and attention cutoffs. Waiting in non-BRT stations and
transfers between non-BRT and BRT bus lines may differ compared to the costs of using
the BRT network. For example, the non-BRT bus stations are on the side of the road and
differ significantly from the BRT stations, which are covered and where commuters pay at
turnstiles to enter. However, we impose that travel time on the bus is valued similarly, given
that the physical buses used on non-BRT and BRT routes are similar. Because we lack price
variation to pin down the level of utility, we normalize the variance of logit shocks in (4).31

We set the attention shape parameter γ = 30, which means that attention drops quickly
to close to zero above ηBRT and ηnon-BRT. We estimate the origin-destination private option
attractiveness terms ζod to match the average bus ridership between o and d over time.

Event Study Moments. We match the following seven moments. First, we match the six
“Post” coefficients αE on bus ridership for all three events, separately for BRT and non-BRT,
from Table 1.

To help pin down the attention parameters, we add a seventh moment focused on trip
duration. We estimate the impact of BRT Event 2 on the logarithm of the total trip duration
from o to d.32 We first measure BRT trip duration (inclusive of waiting time) in the data
using the specific tap-in and tap-out times for the same smart card at the BRT entry and
exit station. To do this, we restrict to stations that are tap-out compliant, defined as when
tap-out transactions are at least 30% of all taps at that station. Thirty-six percent of all
stations (92 stations) are tap-out compliant according to this definition.

Travel times between o and d go down sharply after the new direct and quicker route is
launched between o and d (Figure 4 and Table 3). The magnitude is 0.06 log points, which
is smaller than the impact on log minimum travel time (−0.28). This reflects a mix of two
effects. Travel time on the bus indeed falls to the extent that more commuters substitute to

31We normalize the logit parameter β = D
Dod

where Dod is the straight line distance between grids o and d,
and D = 8.5km is the average distance. Using a constant β would lead logit choices that are nearly random
for o, d pairs that are close because the travel time component of utility is generally increasing in straight
line distance. Our normalization compensates for this mechanical effect.

32We focus on Event 2 because it significantly changes travel time on the bus.
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the new direct route. However, realized wait times increase as commuters are more likely to
wait for the new direct route. The model estimation will help disentangle the attention and
value of travel time parameters that give this result.

Computing Event Study Moments in the Model. For a parameter vector θ, we
compute model-predicted ridership for all origin-destination pairs and all time periods. Using
the 1km hexagonal grids, we compute ridership for 33,880 o, d pairs (covering a maximum
number of 350,493 bus route options), for all versions of the TransJakarta network between
January 2016 and March 2020.

Given θ, for any o, d, t we compute choice probabilities

πodt(θ) =
exp(βvbus

odt )

exp(βvbus
odt ) + exp(βζprivate

od )
,

which depend on the bus route choice model through the expected utility term vbus
odt . Com-

bined with the (cross-sectional) smartphone commuting flow data Vod, this yields model-
predicted ridership for each o, d, t. We also compute expected trip duration. The choice set
between o and d at t includes all TransJakarta routes already launched at t that stop in both
o and d. Transfer options consist of a first-leg route r1 that connects the o to an intermediate
station m, such that there is at least one direct route between m and d.33

We use GPS data to measure travel times on the bus within the network. (Appendix
A.3.2 shows that these are stable within days and across our entire study period.) In the
model, we assume that each route has a bus allocation that is fixed over time, equal to the
average bus allocation in the data. This determines the route’s bus arrival rate.34

Given θ, we estimate ζprivate
od to match average bus ridership over time between o and d.35

We next run the reduced form analysis on model ridership, which we will then match
to the empirical moments from Section 3. Given the high-dimensional fixed effects in equa-
tion (1), estimating PPML regressions at each iteration of the model is computationally
prohibitive. To address this challenge, we proceed in three steps. First, we approximate
the result of PPML estimation of the level of model-predicted ridership R = Rmodel

odt (θ) with
a weighted least-squares regression on log(R).36 Second, we obtain a significant computa-

33Transfer options require a connection at the level of a real TransJakarta station m, not only a grid cell.
34We use a “mechanical” bus allocation to avoid issues of reverse causality in model-predicted ridership.
35We compute the bus share as the ratio of bus ridership from TransJakarta data to total commuting

estimated using smartphone location data. When this ratio is above 1, we use a Bayesian procedure to
estimate the posterior over (0, 1). We then find ζod to match the mean of the posterior ratio.

36In the presence of heterogeneous treatment effects, running PPML with outcome R and OLS on log(R)
will weight treatment effects differently (Tyazhelnikov and Zhou, 2021). That paper shows that using R or a
proxy of R as weights leads to a weighting of heterogeneous treatment effects that is similar to PPML. In our
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tional speed improvement by pre-computing a vector xE for each specification E, such that
the coefficient of interest αE from WLS is given by the dot product αE = (xE)′Yodt for any
outcome vector Yodt.37 Third, we use a slightly coarser set of fixed effects: origin-destination,
origin-quarter-of-the-year, destination-quarter, and week fixed effects. We confirm that the
reduced form results are very similar to this specification relative to (1), and after estimation,
we report model fit results using the original, finer fixed effects.

Estimation and Inference. We use classical minimum distance estimation (CMD) to
match the vector of seven numbers m̂ = (α̂1B, α̂2B, α̂3B, α̂1N , α̂2N , α̂3N , α̂2B,duration), where
{α̂1B, α̂2B, α̂3B, α̂1N , α̂2N , α̂3N} are the empirical estimates for events 1, 2, and 3 for both
BRT and non-BRT estimated in Section 3 above and α̂2B,duration is the travel time moment
discussed above. We find the parameter vector θ that minimizes the objective function

min
θ

(m(θ)− m̂)′Ŵ (m(θ)− m̂), (5)

where m(θ) is the vector of model moments, and Ŵ = Ω̂−1 is the optimal weighting matrix
given by the inverse variance-covariance matrix of the moments m̂. The estimate Ω̂ comes
from estimating all reduced form event coefficients “stacked” in a seemingly unrelated regres-
sion framework. We cluster standard errors two-way by origin grid and by destination grid,
which introduces dependence between the different regressions. To reduce the risk of finding
a local minimizer θ of (5), we repeat the optimization routine starting from 20 randomly
selected initial conditions and confirm that all converge to the same vector.

To obtain confidence intervals for θ̂, we repeat estimation 100 times where we match
the moment vector m̂k = m̂ + εk, k = 1, . . . , 100, where εk ∼ N (0, Ω̂) are draws from a
multivariate normal distribution centered at zero with covariance matrix Ω̂ (i.i.d. over k).
We use the resulting θ̂k estimates to construct confidence intervals.

Identification. Our classical minimum distance strategy has two main advantages. First,
the reduced form moments that we established in Section 3 correspond to model comparative
static exercises of exogenously varying wait time, travel time, and directedness. Second, these
moments are also directly relevant for our counterfactuals, where we will be considering

case, we use the measured TransJakarta ridership Rdata
odt as weights, as a proxy for Rmodel

odt (θ). Unlike model
ridership, which depends on θ, actual ridership is pre-determined before estimation, which is an advantage
for the procedure discussed in the next paragraph.

37The vector xE is a row of the WLS matrix (X ′WX)−1X ′W where X is the matrix of covariates,
including all fixed effects, and W is the weighting matrix. We compute this matrix inversion only once
before estimation, which relies on using pre-determined weights. To further reduce size, we apply the
Frisch–Waugh–Lovell theorem to partial out the fixed effect with the largest number of categories.
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alternate networks that differ in terms of these attributes.
To shed light on how model parameters and the event study moments used in estimation

are linked, we calculate the Jacobian matrix, which measures how, in the model, each mo-
ment’s value changes when each of the parameters changes. Table A.7 reports the matrix
of derivatives dmi(θ)/dθj, each measuring how moment mi responds to a marginal change
in parameter θj, and Figure A.9 plots these relationships for larger parameter changes. For
clarity, both exhibits focus on BRT moments and parameters. The value of travel time on
the bus αtime significantly and positively affects Event 2, with muted impacts on the other
events, which is expected given that travel time does not change significantly for Events 1
and 3. The transfer shifter µtransfer affects Events 1 and 2 negatively, with an impact on
Event 3 that is almost zero. Again, this is as expected, as treated (o, d) pairs in the third
event are already directly connected.

All parameters are estimated jointly, yet given this approximately upper-triangular ma-
trix format, we can describe intuitively how parameters are identified in the following recur-
sive manner. First, Event 3 depends almost only on the value of wait time, so its value pins
down the value of wait time. Next, Event 1 depends on wait time and the transfer shifter,
so its value pins then down the transfer shifter. Finally, with these two parameters in hand,
Event 2 pins down the value of travel time on the bus.

4.4 Estimation Results

Table 4 shows the estimated parameters and 95 percent confidence intervals. We normal-
ize some parameters relative to travel or wait time to ease interpretation. We first estimate
the model only for BRT parameters in column 1, using the three BRT events as moments,
as well as Event 2 for log trip duration.

Commuters in Jakarta view time spent waiting for the bus as more costly compared to
travel time on the bus — the estimated value of wait time αBRT

wait is 2.4 times larger compared
to the value of time on the bus αBRT

time , and we can reject at 95% significance level that the
two parameters are equal.38 The wait time parameter governs the degree to which people
are sensitive to frequent service.

There are several reasons why commuters may dislike wait time more than time on the
bus. In our model, αwait implicitly captures the importance of the entire wait time distri-
bution, including wait time uncertainty. Waiting conditions may be less comfortable than

38By comparison, existing studies of time valuation in public transport contexts focus on Western countries,
and most are based on hypothetical choices. The few that use a revealed preferences approach typically use
observational variation in attributes, unlike the quasi-random variation we use here. Papers in this literature
typically find that the ratio of wait time to in-vehicle time is above one, but with significant dispersion
(Wardman, 2004).
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riding the bus (for example, bus stations are not air-conditioned). In addition, commuters
may mis-perceive wait time as being longer than it actually is.39

Turning to the pure transfer penalty, we cannot reject the hypothesis that µBRT
transfer is equal

to zero. The 95% confidence interval is relatively tight around zero, allowing us to reject a
cost equivalent to 2 minutes of wait time (which is the same as 4.3 minutes of travel time)
or a positive benefit of 4.5 minutes of wait time.

Recall that µtransfer captures preferences for transfer routes above and beyond the cost of
transfer routes in terms of additional wait time (e.g. when making the connection) and any
additional time on the bus. Our results suggest that there is no additional utility cost of
transfers associated with, for example, having to give up one’s seat on the first bus and move
around. The main factors that matter are time spent waiting and traveling on the bus.40

We find that commuters exhibit inattention to the longer bus options in their choice set.
Specifically, a commuter with estimated preferences is less attentive to bus options that are
more than 34% longer than the quickest option in the choice set. This cutoff parameter is
precisely estimated between 1.25 and 1.45.

In the second column, we jointly estimate BRT and non-BRT parameters, adding the
moments for non-BRT events 1,2, and 3. The general pattern of results is similar. The ratio
of the cost of wait time to travel time is 4.2 for non-BRT, which is statistically significantly
larger than the ratio for BRT. This means that waiting for buses in non-BRT stations is
even costlier than in BRT stations. The higher wait cost is perhaps not surprising given
that non-BRT stations are just stops by the side of the road, not enclosed stations as with
the BRT. We cannot reject that the transfer shifter is zero. However, the point estimate is
now negative, and we can only reject at 5% level a transfer cost equivalent to 5.3 minutes
of wait time, which is the same as 22 minutes of travel time. The attention parameter is
ηnon-BRT = 1.44, slightly higher but still broadly similar compared to BRT.

We next explore the model fit. Both models in Table 4 are exactly identified and the
model perfectly matches the data moments at the estimated parameters. However, we can
learn more about model fit by comparing the time series patterns, which are not explicitly
matched. Figure A.6 shows these results, replicating the event study graphs from Figure
2 using model-predicted ridership. In general, for all six moments, the model does a good
job of replicating the lack of pre-trends and increase in ridership after the launch of a new

39For example, Fan et al. (2016) conducts a survey experiment in Minnesota and finds that people mis-
recall wait times, reporting stated wait times that are larger than what they actually experienced.

40As in the case of wait time, there is a lack of estimates of the pure transfer penalty based on quasi-
random variation, as in this paper. Currie (2005) reviews existing studies, concentrated in Western countries
and based mostly on hypothetical choice or, to a lower extent, observational variation, and reports a pure
transfer penalty of 22 minutes of bus travel time on average over studies, ranging from 5 to 50 minutes.
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route. The model also does a good job to fit aggregate ridership trends, including after an
origin-destination pair first becomes connected by non-BRT (Figures A.7 and A.8), with the
mention that ridership adjustments happen more gradually in the data.41 Overall, these
results help build confidence in the model predictions for ridership and commuter welfare of
counterfactual routes, which we consider in the last section of the paper.

5 Optimal Network Design

We now use the preference parameters estimated in the previous section to study the
implications for the bus transit network design problem in Jakarta. We ask how the planner
can optimally re-allocate bus routes and the bus allocation to routes, holding the total
number of busses and the BRT infrastructure fixed, to improve welfare given the estimated
preference parameters. We focus on two key exercises. First, we compare the current network
used by TransJakarta to the planner’s solution. Second, we study how the shape of the
network solution changes when structural preference parameters change.

This problem is discrete and high-dimensional. It does not appear to have an analytical
solution and it resembles NP-hard problems such as the traveling salesperson problem. A
key challenge is that it exhibits both substitution and complementarity forces, so we cannot
use results that rely on complementarity properties (Jia, 2008; Arkolakis and Eckert, 2021).

We introduce a general framework that allows us to characterize optimal allocations and
perform comparative static exercises in our setting.42 The key idea is to allow the planner
to care both about model welfare as well as idiosyncratic shocks defined for every possible
network. We assume these shocks are unknown to the researcher. The key implication is
that for two networks N,N ′ with similar model welfare W (N),W (N ′), small shocks may
tip the planner into preferring one network over the other. This “smoothes” the planner’s
problem and leads to a probability distribution over networks, where networks with higher
model welfare have higher probabilities of being chosen by the social planner as the ‘optimal’
network. We assume that shocks are type-I generalized extreme value (Gumbel) distributed,
giving a multinomial logit distribution.

We can then characterize certain properties of optimal networks by taking expectations
over the planner’s distribution. We derive analytic formulas for expected optimal properties
and their local comparative static with respect to model parameters. These objects can

41While these aggregate moments are not directly targeted, the terms ζprivate
od are estimated to match

average bus ridership over the estimation sample time period.
42The methods we develop may also be applied to quantitative models where optimal policies are high-

dimensional, discrete, and analytically intractable, especially when exact hat methods make it possible to
compare welfare between two counterfactual policies.
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be easily estimated with a sample of networks independently drawn from the planner’s
distribution.

In this setting, the objective is to sample from the planner’s multinomial logit distribu-
tion. We show that established algorithms, such as Metropolis-Hastings, parallel tempering,
or a modified version of simulated annealing (SA), asymptotically sample from the planner’s
distribution. In our application, we run multiple independent SA simulations to obtain an
i.i.d. sample of optimal networks.

We find that, through the lens of the model, optimal networks are more expansive than
the current TransJakarta network. Increasing the cost of wait time leads to less expansive
networks, while increasing the transfer penalty makes the network slightly more direct.

5.1 Bus Network Optimization Environment

The planner’s problem that we consider here is to design a bus network N that maximizes
average commuter expected utility. This involves deciding the number of bus routes, where
bus routes run, and how to allocate a fixed total number of busses to these routes. Formally,
a network is a tuple N = (K, (r1, . . . , rK), (b1, . . . , bK)) where K is the number of routes, rk
is a route, and bk is the number of busses on route rk.

We divide the greater Jakarta area into 418 2km × 2km square grid cells. Each grid
cell is connected to its eight adjacent grids, including diagonals. A bus route is a non-self-
intersecting path on this graph with 1,536 edges. Busses travel in both directions along
each route and stop at each grid station. We construct predicted bus travel times for all
possible edges using the existing bus travel time data, separately for BRT and non-BRT (see
Appendix A.7.1 for details).

The total number of busses and BRT infrastructure are held fixed.43,44

We use the travel demand model that we estimate in section 4. A commuter in the
model going from o to d chooses among available transportation options given the proposed
network N and estimated preferences θ̂, including inattention parameters. Commuting flows
between every (o, d) pair are fixed, computed using the smartphone location data (see section
2.2).45 The counterfactual networks we consider here comprise intensive and extensive margin
changes that resemble the historical changes that our model fits or is estimated to match,

43In counterfactual networks, each route has the BRT travel time on edges that have BRT infrastructure
at present, and non-BRT travel times on all other edges.

44We assume that bus fuel costs only depend on travel time and hence do not change in counterfactuals.
45We re-estimate ζod = ζ(Dod) as a non-parametric function of distance Dod such that the model evaluated

at the current TransJakarta network matches the total ridership for each distance bin. This gives us an
imputed private option attractiveness for all (o, d) pairs. It also accounts for the difference in grid size
relative to demand estimation.
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which increases our confidence in the model’s projections.
To account for potentially higher ridership levels in counterfactual networks, we introduce

bus capacity constraints. We assume that when a bus has ridership above its capacity, pas-
sengers perceive travel time as flowing more slowly. This time-dilation effect grows steeply
as ridership per bus exceeds bus capacity. As ridership in excess of capacity is endoge-
nous, we define a ridership equilibrium where commuter optimal choices given crowding are
consistent with the assumed crowding levels. Appendix A.7.2 describes the model and our
computational approach.

The space we are optimizing over is extremely large. Even the number of unique paths
is exponential in the number of grid cells, and a network consists of any combination of
routes. The number of edge connection configurations is a very rough lower bound. With
418 grid cells and 1,536 possible edges, there are 21,536 configurations where each edge is
either connected or not – i.e. about 10500 possibilities. The allocation of busses to lines
adds even more combinatorial dimensions to the optimisation problem, making it infeasible
to derive the global welfare-maximizing network through exhaustive search over all possible
networks.

5.2 Characterizing Optimal Policies

The Social Planner’s Problem with Idiosyncratic Factors. Consider a social planner
who chooses from a finite set of policies (networks, in our setting) N ∈ N . In a typical
application, the set N is high-dimensional and extremely large. The planner chooses the
network N that solves

max
N

W (N ; θ) + ϵN ,

where W (N ; θ) is welfare according to a known, fully specified model, and θ is a vector
of parameters. ϵN is an idiosyncratic shock for network N , capturing factors not in the
model that gives rise to W (N ; θ), such as network construction cost shocks or preferences
for specific networks. Assume that the ϵN are i.i.d. Gumbel with parameter β.46

The probability that network N maximizes social welfare is

π(N ; θ) =
exp(βW (N ; θ))∑

N ′∈N exp(βW (N ′; θ))
. (6)

We next show how to characterize optimal networks by taking expectations over π, and
how to estimate these objects using a sample of networks drawn from π. We then introduce

46In our application, we choose β to be very large, i.e. we assume that the idiosyncratic shocks are small
relative to model welfare.
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methods that allow us to asymptotically sample from the π distribution.

Optimal Policies: Properties and Local Comparative Statics. Consider a property
defined by a function f(N, θ). For example, this could measure the number of stations for
a bus network N , in which case f only depends on N and not on θ. Alternatively, it could
measure model-predicted ridership, in which case it depends on both N and θ.

We define the expected optimal property as

f ∗(θ) =
∑
N∈N

π(N ; θ)f(N, θ).

This is a weighted average of the property f over all possible networks N , with weights given
by the probability that N is optimal. Given a sample of networks N1, . . . , NK drawn indepen-
dently from π, we can estimate f ∗(θ) using the sample counterpart f̂ ∗(θ) ≡

∑K
k=1 f(Nk, θ).

We can compute comparative statics in θ by estimating f̂ ∗(θ′) for any other value θ′ ̸= θ.
To compute local comparative statics of the expected optimal property, assume that W (N ; θ)

is differentiable in θ for all N . Appendix A.7.3 shows that the gradient of the expected
optimal property is

Dθf
∗(θ) =

∑
N

π(N ; θ)
(
βDθW (N ; θ)

(
f(N, θ)− f ∗(θ)

)
+Dθf(N ; θ)

)
, (7)

where DθW and Dθf are the gradients of W and f with respect to θ, respectively. The first
term captures the change in f ∗ due to changes in the probabilities π(N ; θ), while the second
term captures the direct effect on f of changing θ. When f does not depend directly on θ, as
for the network statistics we analyze later, the gradient scales linearly with β and with the
scale of welfare W . Hence, we focus on the sign of Dθf

∗(θ) and compare the local effects of
different parameters in θ. Once again, we can estimate Dθf

∗(θ) using a sample of networks
from the π distribution.

5.3 The Simulated Annealing Algorithm

Building on the Metropolis-Hastings algorithm, a large family of algorithms has been
designed to allow sampling asymptotically from probability distributions that are difficult
to compute explicitly. The key idea in our case is to construct a Markov chain over the
space of all networks, such that the chain’s stationary distribution is exactly (6). A key issue
is the speed of convergence (or “mixing”) to the stationary distribution. We use a version
of the simulated annealing (SA) algorithm (Nikolaev and Jacobson, 2010; Rothlauf, 2011),
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which is related to the Metropolis-Hasting algorithm but has a pre-specified number of steps
and begins with “noisier” transitions in the initial phase, which helps ensure that the chain
explores widely the space of all networks.

Our algorithm has K steps, an “inverse temperature” parameter that increases exponen-
tially from β1 to βK , and begins at an arbitrary network N1. Given network Nk at step k, a
probabilistic proposal function Ψ(N ′ | Nk) creates a candidate network N ′. This function is
user-provided and application-specific. The network N ′ is accepted with probability:

Pr(Nk+1 = N ′ | Nk) = min
(
1,

exp (βkW (N ′)))Ψ(Nk | N ′)

exp (βkW (Nk))Ψ(N ′ | Nk)

)
. (8)

The candidate network is always accepted if it has higher welfare (with an adjustment for
proposal probabilities), and otherwise it is accepted with a probability that is increasing in
W (N ′) and decreasing in βk.

This algorithm asymptotically samples from the planner’s distribution π.

Proposition 3. Assume that the final inverse temperature parameter is set to βK = β,
the logit parameter from the social planner’s problem and that the proposal distribution Ψ

is irreducible, aperiodic, and satisfies Ψ(N | N ′) > 0 ⇐⇒ Ψ(N ′ | N) > 0. As the
number of steps K → ∞, the final state NK of the simulated annealing algorithm converges
in distribution to π, the planner’s distribution over allocations.

The proof first shows that the stationary distribution of MH with parameter β is exactly
π. Second, we sketch the argument that as K grows, the last section of SA approximates an
MH chain with parameter β. See Appendix A.7.4 for details.

In the initial phase of the SA algorithm, the low inverse temperature implies that new
candidate networks are accepted with high probability. This makes the chain approximately
a random walk in the space of networks. This helps the algorithm explore widely the space
of networks before converging to the π distribution, thus making SA less likely to get stuck
near a local optimum close to the initial network.

The proposal function Ψ is important for the practical success of the SA algorithm. We
use small changes such as adding or deleting one stop at the end of a route, local route
re-routing, and minor changes in bus allocation between routes, and large changes such as
deleting an entire bus route, adding an entirely new bus route, or re-allocating a large share
of buses from one route to other randomly chosen routes. See Appendix A.7.5 for details.

Parameters and Implementation. We set β = 108, so idiosyncratic shocks have a small
variance and the planner’s choice of network is mostly driven by model welfare. We use
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the commuter preference parameters estimated in section 4.3. We use a bus capacity of 84
people per bus based on official TransJakarta data on its bus fleet in early 2020.

We obtain independent asymptotic draws from π using 200 independent SA runs. Each
time, we run the SA algorithm for K = 200, 000 steps.47

Since we are sampling from a distribution of networks, we don’t expect the algorithm to
result in the same network each time. However, given the logit parameter we choose, we
expect these networks to be similar in terms of welfare. Figure A.11 shows the evolution of
the 200 SA runs, and indeed we find that the distribution of welfare for the final network in
each run is concentrated. Results for ridership are similar.48

5.4 Results

Figure 5a shows the TransJakarta bus network at the end of our study period. The
network is relatively dense in the urban core of the city, with most of the 107 bus lines
crossing through the downtown areas. While the core of the city seems well connected by
frequent bus services, Jakarta’s periphery has few busses passing through, and most locations
of the city are not connected at all.

Figure 5c shows one example of a network asymptotically drawn from the planner’s
distribution. (Figure A.12 shows several other examples.) This network covers more locations
compared to the actual TransJakarta network, extending significantly beyond the central
Jakarta DKI area. This larger coverage comes at the cost of slightly lower bus frequency in
the central area of Jakarta.

Optimal networks are more expansive than the current TransJakarta network. Table 5
reports statistics for the current TransJakarta network in column 1 and for the average over
optimal networks in column 2. Panel A reports properties of the network. Optimal networks
connect 57% more locations – 66% of all locations in the study area compared to 42% for the
current network. The share of location pairs connected by a direct or transfer bus connection
also increases considerably, from 12% to 39%. This is achieved with a large network that
covers 31% more edges with bus connections, from 544 km to 714 km.49

Optimal networks lead to a significant increase in welfare compared to the current net-
47The acceptance probability (8) depends on the ratio of proposal kernels Ψ. Calculating this ratio is

computationally intensive, so we approximate it by a ratio of 1 when running the simulated annealing
algorithm. For most types of network change proposals, this approximation is likely valid. A notable
exception is when adding new routes, when this approximation will tend to favor less expansive networks.
This effect works against the main result we describe below. See Appendix A.7.5 for details.

48Figure A.13 plots the entire distribution of other network statistics.
49In our context, efficiency gains do not come with a distributional cost, as coverage also grows for poor

areas. 44% of the locations with above-median poverty rate have access to the current TransJakarta network,
which grows to 61.6% on average for optimal networks.
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work. The average expected utility over all the trips in Jakarta is higher by the equivalent
of 21.7 seconds of travel time on the bus, per trip. This may not sound enormous, but
recall that this is over all trips, not just bus trips – so given that 1.57% of all trips use the
bus with the current network, the equivalent variation improvement is a reduction of 23.1
minutes of bus travel time per initial bus trip. Ridership increases from 1.57% of all trips
with the current network to 2.57% on average with optimal networks.50 As a consequence,
the number of passengers per bus also increases. For example, bus occupancy as experienced
by the average passenger doubles. Notably, these numbers are well below the average bus
capacity of 84 people per bus (see Figure A.14). Bus trips are longer on average in optimal
networks, and optimal networks have a slightly higher share of direct bus trips.

Comparative Statics. We next study how the optimal network shape changes when com-
muter preferences change (Table 6). This type of exercise helps us assess the sensitivity of
our results to the parameters to estimate, and reveals how these micro preference parameters
affect optimal network design. We focus on changes in the three key preference parameters
that we estimated: the value of wait time αwait, the value of travel time on the bus αtime, and
the transfer shifter µtransfer. We study the impact of large changes in parameters by sam-
pling 40 optimal networks each for these different parameters using the simulated annealing
algorithm.51 We study the impact of these three parameter changes on three classes of bus
network shape measures.

First, we find that network coverage shrinks as wait time costs increase (Table 6, panel
A). For example, if commuters dislike wait time twice as much as we estimate, the share of
location pairs connected by optimal networks goes from 39% with our baseline parameters
to 23%. However, even with double wait time costs – which means that wait time is 4.8×
and 8.4× as costly as time on the bus for BRT and non-BRT – optimal networks are still
substantially more expansive than the current TransJakarta network.

Second, we consider the speed of bus connections (panel B). For each origin-destination
pair with a direct bus connection, we consider the quickest bus connection in the network,
and divide its duration by the duration of the quickest possible bus route between the two
locations, over all possible paths in the geographic environment. In the current TransJakarta
network, direct connections are on average 36% slower than the quickest possible bus con-
nection. The average ratio is similar for the baseline optimal networks, but it goes down

50These numbers are based on our estimate of 35.1 million weekday trips between different grid cells, which
we obtain from the smartphone location data. This implies a weekday average TransJakarta ridership of
551,036 with the current network.

51In Table A.9 we report the local comparative statics from (7) around the baseline estimated parameters.
For most entries, we find the same direction for comparative statics.
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significantly, to 26%, when using 2 × αtime. This counterfactual also affects the coverage
measures in panel A, that is, they lead to more compact networks, although this effect is
smaller than that of doubling αwait.

Third, we consider to what extent the network provides direct connections versus offering
connections that require a transfer (panel C). In the current TransJakarta network, 21% of
all location pairs that are connected by bus also have a direct connection. This number is
lower for optimal networks (12%), and it goes up to 16% when we assume that the transfer
penalty is higher by the equivalent of 15 minutes of wait time. This counterfactual also
increases the (inverse) measure of network speed in panel B, likely because of additional
location pairs that are connected by winding direct connections.

None of the parameter vectors we consider leads to network shape parameters that match
the current TransJakarta network. However, a higher value of waiting time and a sharper
transfer penalty help move the network statistics toward those achieved by the current
TransJakarta network.

6 Conclusion

The trend toward centralized urban planning of public transport networks is likely to
continue in the coming decades. For example, there are half a dozen BRT systems in African
cities, with ten others are under planning or construction (The World Bank, 2022). As the
number of large cities increases, this number will grow, impacting traffic congestion and
pollution, commuting and work patterns, and more generally the shape of how cities grow.

In this paper, we studied the design of citywide public transport networks. Launching
a public transport route affects the attractiveness of using the network throughout the city.
Its impact depends on how the new route increases access, and whether it leads to faster,
more frequent, or more direct connections, and how potential riders value those attributes.
We used the large expansion of the TransJakarta public bus system between 2016-2020 to
separate how specific types of network changes affected bus ridership, and then estimated
separate commuter preference parameters for these service quality dimensions by matching
the reduced form impacts on ridership.

We find that commuters in Jakarta value bus wait time 2-4 times more than time spent
on the bus, transfers in BRT stations do not carry a utility penalty above and beyond the
additional wait time and time on the bus, and commuters pay little attention to slow options
in their bus network choice set. Characterizing the optimal networks in terms of coverage,
speed, and directedness metrics, we found that the optimal bus networks in Jakarta would
be more expansive — even holding the resources of the bus company fixed — connecting
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more people and location pairs, and boosting overall usage. An optimally designed network
that is based on these parameters thus has the potential to dramatically expand ridership
and consumer welfare compared to the networks in place today.
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Figure 1: TransJakarta Network Expansion Since 2016

(a) Expansion of TransJakarta Route Network

(b) Number of BRT and Non-BRT Routes Over Time

Notes: The top panel shows two snapshots of the TransJakarta network in 2016 and 2019. The bottom panel
shows the number of active routes over time.
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Figure 2: Bus Ridership Impacts of BRT and Non-BRT Network Expansions

(a) Event Types 1 and 2: New Direct Route

(b) Event Type 3: Additional Busses (Direct)

Notes: BRT graphs on the left, and non-BRT graph on the right. In the graphs on the first row, the blue,
solid lines report monthly coefficients for the first event type (direct route with no change in travel time on
the bus). The red, dashed lines report monthly coefficients for the second event type (quicker direct route).
The graphs in the second row show the impact of the third event type. All specifications are the event
study version of equation (1). 95% confidence intervals are based on standard errors clustered two-way at
the origin and destination grid level.
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Figure 3: Aggregate Trip Volume (Lack of) Impacts of BRT and non-BRT Network
Expansions

(a) Event Types 1 and 2: New Direct Route

(b) Event Type 3: Additional Busses (direct)

Notes: The outcome is aggregate trip flows from smartphone data. The time sample is restricted to after
March 2018. The specifications are otherwise the same as in Figure 2.
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Figure 4: Trip Duration Impact of BRT Event 2 (New and Quicker Direct Route)

Notes: The outcome is the log of trip duration (wait time plus time on the bus), measured from linked tap-in
and tap-out observations for the same smart card. The sample is restricted to BRT destination stations
that are tap-out compliant, defined as stations where tap-out transactions account for at least 30% of all
transactions. The specification is the same as for Event 2 in Figure 2. 95% confidence intervals are based
on standard errors clustered two-way at the origin and destination grid level.
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Figure 5: Current TransJakarta Network and Optimal Network Example

(a) The Current TransJakarta Network (b) Edge-level Bus Frequency (Current)

Busses arriving every

30secs
1min
2mins
10mins

(c) Optimal Network N ∼ π (Single SA Run) (d) Edge-level Bus Frequency (Single SA Run)

Busses arriving every

30secs
1min
2mins
10mins

Notes: This figure depicts the current TransJakarta network and one of the networks N obtained using
the simulated annealing (SA) algorithm, asymptotically sampled from the planner’s distribution π. The
study area (black outline) includes the Jakarta DKI area (light blue) as well as the urban districts of
Tangerang, South Tangerang, Depok, and Bekasi. Different bus lines are printed in different colors. Edges
connected through BRT dedicated bus lanes are denoted by bright pink underlay. Panel (a) plots the
current TransJakarta network (107 bus lines). Panel (b) shows bus frequency on each edge in the current
TransJakarta network. To construct this graph, for each directed edge we compute the total bus arrival over
all routes that share that edge. For each edge, we then take the average over the two directions. Panels (c)
and (d) repeat the exercise for one of the 200 SA networks, chosen randomly.
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Table 1: Impact of Network Expansion on Travel Time, Wait Times, and Bus Ridership

(a) BRT

log Min Travel Time log Bus/hr (origin) Bus Ridership

(1) (2) (3) (4) (5) (6) (7) (8) (9)

E1: New Direct Line 0.036*** -0.051* 0.158***
(0.007) (0.026) (0.021)

E2: New Direct Line (quicker) -0.294*** 0.070 0.268***
(0.027) (0.036) (0.037)

E3: Additional Busses -0.027* 0.320*** 0.092***
(0.011) (0.035) (0.023)

Orig × Dest FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Orig × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dest × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS OLS OLS OLS PPML PPML PPML

Mean outcome 33.2 44.2 12.9 35.2 27.0 20.0 111.3 76.9 210.4
Median outcome 31.0 42.4 10.6 28.7 20.7 16.9 55.9 39.1 94.6
Unique origin x destination pairs 18,433 18,449 5,319 18,433 18,449 5,319 18,433 18,449 5,319
Unique origins 148 148 148 148 148 148 148 148 148
N 3,154,672 3,143,019 793,965 3,154,672 3,143,019 793,965 3,154,672 3,143,019 793,965
R2 0.981 0.980 0.998 0.923 0.921 0.997

(b) Non-BRT

log Min Travel Time log Bus/hr (origin) Bus Ridership

(1) (2) (3) (4) (5) (6) (7) (8) (9)

E1: New Direct Line 0.030** 0.292*** 1.016***
(0.009) (0.044) (0.153)

E2: New Direct Line (quicker) -0.716*** 0.205*** 1.320***
(0.072) (0.030) (0.267)

E3: Additional Busses -0.089*** 0.425*** 0.450**
(0.021) (0.015) (0.141)

Orig × Dest FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Orig × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dest × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS OLS OLS OLS PPML PPML PPML

Mean outcome 34.8 49.3 13.0 11.6 11.2 7.1 19.2 7.5 26.0
Median outcome 24.8 47.2 11.0 7.8 8.5 6.3 0.0 0.0 0.0
Unique origin x destination pairs 2,588 2,652 1,263 2,588 2,652 1,263 2,588 2,652 1,263
Unique origins 57 57 64 57 57 64 57 57 64
N 306,722 313,994 144,763 306,722 313,994 144,763 306,722 313,994 144,763
R2 0.992 0.987 0.998 0.967 0.967 0.992

Notes: The two panels report results for BRT and non-BRT, respectively. Columns 1-6 capture the “first
stage” impacts of the relevant events and are estimated using OLS. The bus ridership effects (columns 7-9)
are estimated by PPML. “Min Travel Time” captures the time on the bus (excluding wait time) of the
quickest route between an origin and a destination, given the routes available in the TransJakarta network
at that time. “Buses per Hour” measures the total number of buses arriving at the origin grid over all the
routes connecting the origin and destination. (The set of routes is restricted to direct routes for event 3.)
The coefficients capture the average effect in the first 10 months after the respective event. The origin and
destination data is aggregated at the level of 1km hexagonal grids. Standard errors clustered two-way at the
origin and destination grid level. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 2: Impact of BRT and Non-BRT Network Expansions on Aggregate Trip Volume

(a) BRT
log Min Travel Time log Bus/hr (origin) Bus Ridership All trips

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

E1: New Direct Line 0.057*** -0.158*** 0.108*** -0.008
(0.008) (0.031) (0.016) (0.051)

E2: New Direct Line (quicker) -0.214*** -0.108*** 0.208*** -0.073
(0.026) (0.030) (0.032) (0.049)

E3: Additional Busses -0.006 0.221*** 0.046 0.166
(0.036) (0.058) (0.041) (0.117)

Orig × Dest FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Orig × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dest × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS OLS OLS OLS PPML PPML PPML PPML PPML PPML

Mean outcome 32.6 42.0 13.4 37.1 32.9 13.6 122.9 93.7 195.5 1895.5 1729.5 10117.3
Median outcome 30.6 42.2 10.9 32.5 27.7 11.6 61.9 54.8 153.7 0.0 0.0 6412.4
Unique origin x destination pairs 13,802 13,675 2,497 13,802 13,675 2,497 13,802 13,675 2,497 13,802 13,675 2,497
Unique origins 124 124 89 124 124 89 124 124 89 124 124 89
N 1,184,781 1,172,746 197,039 1,184,781 1,172,746 197,039 1,184,781 1,172,746 197,039 1,184,781 1,172,746 197,039
R2 0.986 0.985 0.999 0.948 0.948 0.999

(b) Non-BRT
log Min Travel Time log Bus/hr (origin) Bus Ridership All trips

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

E1: New Direct Line 0.027* 0.253*** 0.999*** -0.042
(0.011) (0.048) (0.199) (0.060)

E2: New Direct Line (quicker) -0.736*** 0.200*** 1.337*** 0.031
(0.094) (0.036) (0.322) (0.060)

E3: Additional Busses -0.097** 0.365*** 0.425* -0.177*
(0.031) (0.023) (0.176) (0.073)

Orig × Dest FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Orig × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Dest × Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Estimator OLS OLS OLS OLS OLS OLS PPML PPML PPML PPML PPML PPML

Mean outcome 35.9 44.3 12.4 12.0 12.0 7.4 13.0 7.6 40.7 3948.6 6060.7 6880.5
Median outcome 24.5 43.6 10.8 7.8 8.5 6.9 0.0 0.0 0.0 635.5 956.9 1017.5
Unique origin x destination pairs 1,906 1,950 860 1,906 1,950 860 1,906 1,950 860 1,906 1,950 860
Unique origins 49 49 53 49 49 53 49 49 53 49 49 53
N 156,656 160,409 61,377 156,656 160,409 61,377 156,656 160,409 61,377 156,656 160,409 61,377
R2 0.995 0.989 0.999 0.976 0.976 0.997

Notes: This table reports the impact on the aggregate trip volume as measured from smartphone data
(columns 10-12). The outcome is aggregate trip volume from smartphone data. The time sample is restricted
to after March 2018. For comparison, columns 7-9 report the impact on bus ridership in the same sample.
Standard errors clustered two-way at origin and destination grid level. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 3: Impact of BRT Event Type 2 on Total Trip Duration

log Min Travel Time log Bus/hr (origin) Bus Ridership log Trip Duration

(1) (2) (3) (4)

E1: New Direct Line 0.055*** -0.212*** 0.110*** -0.003
(0.012) (0.038) (0.025) (0.005)

E2: New Direct Line (quicker) -0.284*** 0.165*** 0.071* -0.057***
(0.038) (0.045) (0.036) (0.012)

Orig × Dest FE Yes Yes Yes Yes
Orig × Week FE Yes Yes Yes Yes
Dest × Week FE Yes Yes Yes Yes

Estimator OLS OLS PPML OLS

Median outcome (E1) 30.1 33.7 68.4 54.2
Median outcome (E2) 40.1 27.8 61.2 57.6
Unique origin x destination pairs 13,455 13,455 13,455 13,455
Unique origins 148 148 148 148
N 595,685 595,685 595,685 595,685
R2 0.991 0.970 0.881

Notes: Column 4 in this table reports the impact on log trip duration (wait time plus time on the bus)
of BRT Event 2. The outcome is trip duration measured from linked tap-in and tap-out observations for
the same smart card. The sample is restricted to BRT destination stations that are tap-out compliant,
defined as stations here tap-out transactions account for at least 30% of all transactions. We jointly estimate
Events 1 and 2, so the “E2: New Direct Line (quicker)” coefficient captures the additional effect for Event
2. First-stage and bus ridership impacts are reported in columns 1-3. Standard errors clustered two-way at
the origin and destination grid level. * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 4: Estimated Demand Model Parameters

(1) (2)
BRT BRT non-BRT

Wait time αwait/αtime 2.4 2.4 4.2
[1.8, 4.3] [ 1.9, 4.3] [ 3.2, 6.6]

Travel time αtime 1 1 1

Transfer shifter µtransfer/αwait (minutes) 2.3 2.3 -1.1
[-2.0, 4.5] [ -2.0, 4.4] [ -5.3, 0.9]

Attention Cutoff η 1.34 1.34 1.44
[1.25, 1.45] [ 1.25, 1.45] [ 1.43, 1.52]

Logit parameter σ 0.060 0.060
[0.023, 0.113] [0.023, 0.105]

Moments:
BRT events (1-3) Yes Yes
BRT event 2 trip duration Yes Yes
non-BRT events (1-3) Yes

Notes: We use a classical minimum distance with the optimal weighting matrix, and 20 random initial
conditions. To construct the 95% confidence intervals, we re-estimate the model 100 times. Each time,
we target a data moment vector m̂k = m̂ + εk, where εk is randomly drawn from the multivariate normal
distribution N (0, Ω̂). Ω̂ is the estimated variance-covariance matrix of the reduced form analysis, jointly
estimated in a seemingly unrelated regression framework. During this procedure, we use 4 random initial
conditions for each estimation.
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Table 5: Properties of Current and Optimal Networks

Statistic
Current
Network

Baseline
Optimal

Difference
Baseline – Current

Panel A: Network and access properties

Locations with a bus station (share) 0.42 0.66 0.24
(0.0015)

Location pairs connected by bus (share) 0.12 0.39 0.27
(0.0018)

Trips with access to bus (share) 0.73 0.91 0.18
(0.00094)

Total network mileage (km) 543.9 713.9 169.9
(2.0)

Number of bus lines 107 27.76 -79.24
(0.2)

Panel B: Ridership equilibrium properties

Welfare -0.0031 -0.0027 0.00036
(0.00000065)

Ridership (%) 1.57 2.57 1.0063
(0.0028)

Average bus occupancy (pax/bus) 13.62 33.00 19.39
(0.034)

Average experienced bus occupancy (pax/bus) 23.82 46.1 22.27
(0.056)

Average bus trip duration (hrs) 0.59 0.81 0.23
(0.00073)

Transfer trips (share of all bus trips) 0.76 0.71 -0.049
(0.00054)

Notes: This table reports characteristics of the TransJakarta network (column 1) and of optimal networks, on
average over 200 independent simulated annealing (SA) runs (column 2). Panel A reports network properties,
while Panel B reports properties of the ridership equilibrium. “Trips with access to bus” denotes the share
of all trips (measured using smartphone data and assumed fixed in counterfactuals) that can be completed
using (have access to) the bus network. “Total network mileage” computes the total length of all edges
traversed by the network. The difference in welfare in Panel B in equivalent variation terms is a reduction
of 23.1 minutes of bus travel time for each bus trip in the current network. “Ridership” corresponds to the
share of total trips across Jakarta using the bus network. “Average bus occupancy” is the occupancy level
of the average bus, assuming busses are active for 17 hours each day (5AM-10PM) and using the model to
predict total bus ridership for each route and pair of consecutive stations. “Average experienced occupancy”
weights this number by ridership itself to get at the average amount of other passengers on a bus for a
typical passenger. In column 3, in parentheses, bootstrapped standard errors are obtained using the 200
independent runs.
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Table 6: Optimal Networks Comparative Statics

Comparative Statics (Large Changes)

Statistic
Current
Network

Baseline
Optimal

Wait time
2× αwait

Time on Bus
2× αtime

Transfer
µtransfer − 15mins

Panel A: Coverage measures

Locations with a bus station (share) 0.42 0.66 0.5 0.59 0.65
(0.0015) (0.0032) (0.0024) (0.0031)

Location pairs connected by bus (share) 0.12 0.39 0.23 0.3 0.41
(0.0018) (0.0028) (0.0025) (0.004)

Total network mileage (in km) 543.95 713.87 498.9 664.89 744.068
(2.032) (3.15) (3.24) (3.73)

Panel B: Speed measures

Bus time relative to quickest possible bus route 1.36 1.35 1.3 1.26 1.48
(0.01) (0.024) (0.021) (0.029)

Panel C: Directness measures

Connected directly (share of all connected pairs) 0.21 0.12 0.14 0.13 0.16
(0.0006) (0.0016) (0.0011) (0.0018)

Notes: This table reports how network shape measures (rows) change as a function of parameter changes
(columns). Columns 3-5 report characteristics of optimal networks achieved with different sets of preference
parameters, each obtained from 40 independent simulated annealing runs with altered parameter vectors:
double value of wait time (αBRT

wait and αnon-BRT
wait ) relative to our estimate, double value of time on bus (αtime)

relative to our estimate, and an additional penalty of taking a transfer (µBRT
transfer and µnon-BRT

transfer ) equivalent
to 15 minutes of wait time. See Table 5 for variable definitions. To construct “bus time relative to quickest
possible bus route,” for each origin-destination pair that is directly connected, we consider the quickest direct
bus connection in the network, and divide its duration by the duration of the quickest possible bus route
between the two locations in the entire geographic environment. We then average this ratio over all directly
connected origin-destination pairs. “Connected directly (share of all connected pairs)” computes the share of
all location pairs that are connected by bus, for which a direct connection also exists. Bootstrapped standard
errors are in parentheses. Table A.9 reports the local comparative statics version of this table.
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