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ABSTRACT 
 
This paper investigates the properties of dynamic panel data (DPD) estimators in the context 

of a typical growth dataset. Using Monte Carlo simulations, we compare the performance of 

various DPD estimators, namely the Anderson-Hsiao (AH) and Arellano-Bond’s General 

Method of Moment (GMM) one-step and two-step estimators, using the least-square dummy 

variable (LSDV) as a benchmark. We arrive at three conclusions. First, LSDV produces 

biased estimates and the biases are significant even for a moderate-sized time dimension. 

Second, there is no immediately obvious choice to replace LSDV among the estimators 

considered here. For one, there is the bias-efficiency trade-off. In addition, differences in the 

characteristics of data influence the performances of the various estimators. Finally, serial 

correlations in the error terms, even at a low degree, can introduce significant biases to the 

estimations. 
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Properties of Fixed Effects Dynamic Panel Data Estimators for a 
Typical Growth Dataset: Monte Carlo Evidence 

Arya B. Gaduh 

I. Introduction 

Among most existing empirical studies on growth, single cross-section methodology 

is the dominant tool of analysis. Its simple implementation is appealing, yet this 

comes at a cost. Single cross-section specification puts implicit restrictions that 

production functions and technologies across countries are identical. Hence, if we 

believe that production functions and technologies differ across countries, single 

cross-section regression suffers from omitted variable bias. Furthermore, cross-section 

fails to capture the dynamic aspects of growth. As such, recent years saw 

macroeconomists trying to accommodate these features using dynamic panel data 

(DPD) specification (Islam, 1995; Caselli, Esquivel and Lefort, 1996).   

 There are many studies on properties of DPD estimators; most, however, are 

oriented towards typical microeconomic datasets with large cross-section but small 

time dimensions.1 In contrast, little is written for the typical dimension of 

macroeconomic datasets with sizable cross-section dimensions and moderate size 

time dimensions. This difference is important for two reasons.2 First, for small time 

dimensions (T), least square dummy variable (LSDV) estimates are biased. This bias 

becomes less significant as T increases. Those working with macroeconomic panels 

need to know how large must T be before this bias becomes negligible. Second, the 

characteristics of the data influence the robustness of the estimation techniques used. 

Hence, when working with macro panel datasets, there is no hard-and-fast rule as to 

which estimation technique is best.3 

 The paper by Judson and Owen (1999) seems to be the only one that 

specifically examines DPD estimations for macro datasets. The present paper is 

similar to theirs in the basic designs of the experiments. However, there are three 

differences. First, we modify the parameter values. We use parameter values that are 

calibrated (using the Heston and Summer’s Penn World Table) to mimic typical 

growth regressions. Also, we only take a subset of estimation techniques considered 

in their paper. Finally, this study extends their experiment by incorporating different 
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degrees of serial correlation of the disturbances to observe their effects on the 

properties of the estimators.  

 We draw three conclusions. First, LSDV produces biased estimates and the 

biases are significant even for a moderate T, especially when γ takes a low value.  For 

γ close to one, this problem is much less pronounced. Second, there is no immediately 

obvious choice to replace LSDV among the estimators considered here. For one, there 

is the bias-efficiency trade-off. In addition, differences in the characteristics of data 

influence the performances of the various estimators. Finally, serial correlations in the 

error terms, even at a low degree, can introduce significant biases to the estimations. 

We begin in the next section with a discussion of several estimation 

techniques whose properties are examined in this paper. In Section III, we discuss the 

methodology. Section IV considers the results, both in the absence and presence of 

autocorrelations in the disturbance terms. Section V presents our conclusions.  

II. Inconsistency of LSDV and proposed solutions 

For growth regressions, it is usually preferable to use fixed effects instead of random 

effects models. Since we use panel data to capture the omitted variables ignored by 

the single cross-section, these individual (country) specific effects are likely to be 

correlated with the regressors (Judson and Owen, 1999; Islam, 1995). 

The canonical dynamic fixed effects model is 

yit = γ yit-1 + x’it.β + µi + εit i = 1, …, N; t = 1, … T (1) 

 
where γ is a scalar, x’it is 1 x (K-1) matrix, and β is (K-1) x 1, µi is a fixed effect and 
εit ~ IID (0, σε

2).  
 
We also assume 

σε
2 > 0, 

E(εit, εjs) = 0 where i ≠ j, t ≠ s,  (2) 

E (xit, εit) = 0 ∀ i, j, t, s 

 
 Fixed effects model is usually estimated using LSDV. However, with the 

lagged dependent variable as a regressor, LSDV generates biased estimates. 

Subtracting the time mean of (1) from itself gives us 

yit - yi. = γ( yit-1 - yit.-1)+ (x’it- x’i.)  β+ (εit - εi.) (3) 
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where for any variable zit, zi. = (1/T)∑ =

T

t itz
1

and zi.-1 = (1/T)∑ −

=

1

0

T

t itz . LSDV estimates 

the parameters by performing ordinary least square (OLS) on Eq. (3). However, since 

the time mean of εit includes the disturbance of yi,t-1, the transformed regressor (yi,t-1 - 

yi,t.-1) is not orthogonal to the transformed disturbance term (εit - εi.). Even when N 

goes to infinity, this will give biased estimates. Nickell (1981) calculates this bias to 

be of O(1/T); as T grows, the bias becomes smaller. However, it is not clear at what 

critical value of T will this bias become negligible. 

 Anderson and Hsiao (1981) suggest using instrumental variable (IV) 

estimation as an alternative to LSDV. Taking the first difference of Eq. (1), we 

remove the fixed effects and arrive at 

yit - yit-1 = γ( yit-1 - yit-2)+ (x’it- x’it-1). β +  (εit - εit-1) (4) 

With this specification, both lagged difference ∆yit-2 and lagged level yit-2 are potential 

instruments. These instruments are highly correlated with the regressor ∆yit-1 and 

uncorrelated with the disturbance terms, as long as the disturbances are not serially 

correlated. Arellano (1989), however, argues that for a wide range of parameters, 

estimations using lagged differences ∆yit-1 has a singularity point and very large 

variances and therefore, suggests the use of lagged level instead.4 

Meanwhile, Arellano and Bond (1991) suggest using the orthogonality 

conditions between lagged values of yit and the disturbance terms to obtain additional 

instruments. Observing Eq. (4), they notice that for t = 3, for example, yi1 would be a 

valid instrument for ∆yit-1. For t = 4, both yi1 and yi2 would be appropriate instruments 

for ∆yit-1 since neither is correlated with the disturbance terms (εit - εit-1). By applying 

this kind of argument, they obtain an additional instrument for each subsequent t, such 

that for t = T, ∆yiT-1 has a set of valid instruments (yi1, yi2, … yiT-2). Stacking these sets 

of instruments, we get 
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Given ∆ε'i = (εi3- εi2,…, εiT- εiT-1) and observing that E(W’i.∆ε'i) = 0, they derive 

moment conditions which are then used to perform generalised method of moments 

(GMM) estimations.  

Arellano and Bond propose a two-step estimation process. In the first step, we 

need an approximation of ∆ε'i. By constructing   
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which is (T-2) x (T-2), the Kronecker product (IN ⊗ G) gives a preliminary 

approximation of ∆ε'i in an MA(1) process. With both Wi’s and ∆ε'i available, we can 

do the one-step consistent GMM estimation. From this first step, we obtain estimates 

of ∆ε'i. This can immediately be utilised to perform the second step of the two-step 

GMM estimation. They claim that GMM gives more efficient estimates than IV. 

 In this paper, using a Monte Carlo study, we consider LSDV, Anderson-Hsiao 

IV (AH) using lagged levels as instruments, and Arellano-Bond’s one-step (GMM1) 

and two-step (GMM2) estimations. In the first part, we consider the case where all of 

the assumptions listed in Eq. (2) are satisfied. It is important to note that all of the 

results derived above rest on Eq. (2) being satisfied, particularly about the 

disturbances not being serially correlated. However, we rarely find serially 

uncorrelated disturbances in macroeconomic data. Therefore, we simulate different 

degrees of serial correlations here. This constitutes the second part of our results. 

III. Methodology 

The data generation process follows that of previous studies (Judson and Owen, 1999; 

Kiviet, 1995). xit was generated with  

xit = δ xit-1 + ξit ξit ~N(0, σξ
 2) (7) 

With growth regressions in mind when designing the experiment, we use the log of 

investment share in GDP in 1960 from the Penn World Table (PWT) as the initial 

values of xi0. To find values for δ and σξ
 2, we took the xit data for all countries 

between 1960 and 1990, and did a fixed effects regression of xit on xit-1. This exercise 
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gave a value of 0.77 for δ, and values between –2.5 and 3.3 for the estimated 

residuals. The latter is used to approximate the volatility of σξ
 2. 

Meanwhile, yit was generated using Eq. (1). We took the log of GDP per 

worker in 1960 as the initial values of yi0. For the parameters in Eq. (1), Islam (1995) 

suggests a range of 0.59 to 0.79 for γ, and 0.12 to 0.15 for β.5 He also estimates the 

µi’s to be between 1.11 and 1.81.6 Similar to the case of xit, the volatility of σε
 2 was 

estimated by fixed effects regression of  yit on yit-1 and xit. From this exercise, the 

disturbances were in the range of -0.56 to 0.95.  

 Hence, our parameter choices can be summarised as follows. We use a value 

0.8 for δ and set the volatility of ξit to 3. Meanwhile, for the values of γ,  we consider 

0.6 and 0.8 as suggested by Islam (1995), as well as 0.2 to investigate whether a low 

γ give a qualitatively different result. β’s  are 0.15 and 0.75 and the volatility of εit is 

set at 0.75. µi’s are between 1.0 and 2.0, generated by a random number generator. 

Disturbance terms were generated with a fixed seed for replicability and we threw 

away the first 100 randomly generated numbers. We then run simulations for N = 50 

and T = 5, 10, 20, and 30. In this first set of experiments, we run a total of 24 

simulations. 

IV. Results 

A. In a world with no serially correlated errors  

An immediate issue facing our simulation was the choice of instrumental variables for 

the Arellano and Bond estimation. Taking a full set of instruments might seem 

sensible for small T’s; however, for T ≥ 20, for instance, computational complexity 

increases significantly. Preliminary simulations suggested that it could take almost a 

day to complete estimations of LSDV, AH, GMM1 and GMM2 with complete sets of 

instruments for N = 50, T = 20 and 1000 iterations. Fortunately, restricting the 

maximum number of instruments used incurs minimal loss on the robustness of the 

estimations. In fact, Arellano and Bond (1998) advise against using the full history of 

instruments because, in the presence of an exogenous regressor, this might introduce 

small sample overfitting biases. This is confirmed by our preliminary exercise. 

  We also find that GMM2 estimation does not provide a significant 

improvement over GMM1. In most cases, we find GMM1 outperforms its GMM2 
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counterpart in terms of root mean squared errors (RMSE). This result confirms that of 

Judson and Owen (1999), who then abandoned GMM2 and instead, just chose a few 

well performing GMM1 estimators. We follow their strategy here. Early experiments 

suggest that GMM103, and GMM110, which are GMM1 with 3, and 10 instruments, 

perform rather well. 

 Table 1 shows biases in LSDV estimations. Clearly, the bias in γ is much more 

severe than that in β. It also confirms previous studies (e.g., Kiviet, 1995; Judson and 

Owen, 1999; Nickell, 1981) that the bias decreases in T. For a small T, the bias 

increases in γ; however this relationship does not hold for moderate and large T’s. For 

low γ's, the bias can be quite significant in relative terms: even for T = 20, the bias can 

be as large as 20 percent of the true value for γ  = 0.2.7 

 
Table 1. Biases of LSDV estimations 

T γ γ−bias (S.E.) β β−bias (S.E.) 

5 0.2 -0.1664(0.0590) 0.15 0.0071(0.0223)
 0.6 -0.1740(0.0557) 0.15 0.0056(0.0233)
 0.8 -0.2874(0.0671) 0.15 -0.0038(0.0226)

10 0.2 -0.0820(0.0392) 0.15 0.0071(0.0119)
 0.6 -0.0755(0.0313) 0.15 0.0064(0.0121)
 0.8 -0.1043(0.0303) 0.15 0.0055(0.0115)

20 0.2 -0.0398(0.0247) 0.15 0.0050(0.0069)
 0.6 -0.0364(0.0183) 0.15 0.0055(0.0071)
 0.8 -0.0400(0.0162) 0.15 0.0054(0.0067)

30 0.2 -0.0259(0.0204) 0.15 0.0035(0.0054)
 0.6 -0.0238(0.0143) 0.15 0.0040(0.0053)
  0.8 -0.0229(0.0112) 0.15 0.0045(0.0050)

N = 50, δ = 0.8, σξ=3, σε=0.75. 

The full result for γ is presented in Table 2. Here, we see a case of the cure 

being worse than the disease. Only in two simulations, to wit, with T = 5, β = 0.15 and 

γ being either 0.2 or 0.6, do we have a strong case for using either AH or GMM1 

instead of LSDV. Even when T = 5 – the case where the biases of LSDV are expected 

to be large enough to merit alternative estimators – the RMSE’s of LSDV in the other 

four simulations are better than those of AH and GMM1. 

For low values of γ, AH estimates tend to be unbiased but less efficient than 

LSDV. However, AH is somewhat unreliable: it frequently gives highly biased 

estimates for certain parameters.8  On the other hand, as discussed above, GMM103 

estimates are subject to overfitting bias which, while not as large as that of LSDV, can 

be rather significant. In terms of efficiency, GMM103 performs quite well for high 

 6



values of γ while AH tends to perform poorly. As T increases, the performance of 

GMM1 worsens. In almost all cases for T ≥ 10, GMM103 and GMM110 give 

significantly large biases, especially for low β's. For T ≥ 10, AH gives unbiased but 

inefficient estimates with standard errors that are increasing in γ. At their worst, these 

standard errors can be more than five times the true value of the coefficients.  
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Table 2. Biases, Standard Errors and RMSE of Various Estimators 

T β γ LSDV-bias AH-bias GMM103-
bias 

GMM110-
bias 

   (S.E.) (S.E.) (S.E.) (S.E.) 
   [R.M.S.E] [R.M.S.E] [R.M.S.E] [R.M.S.E] 
       

5 0.15 0.2 -0.1664 0.0008 -0.0894 - 
   (0.0590) (0.0959) (0.132) - 
   [0.1766] [0.0959] [0.1594] - 
  0.6 -0.1740 0.0021 -0.0529 - 
   (0.0557) (0.0921) (0.1011) - 
   [0.1827] [0.0921] [0.1141] - 
  0.8 -0.2874 -0.5940 -0.3618 - 
   (0.0671) (15.5292) (0.2626) - 
   [0.2951] [15.5406] [0.4471] - 
    
 0.75 0.2 -0.0316 0.0027 -0.0367 - 
   (0.0273) (0.0967) (0.0838) - 
   [0.0418] [0.0967] [0.0915] - 
  0.6 -0.0318 -22.4095 -0.0395 - 
   (0.0241) (716.1240) (0.0858) - 
   [0.0399] [716.4745] [0.0945] - 
  0.8 -0.0262 -0.0421 -0.0315 - 
   (0.0200) (1.6729) (0.0763) - 
   [0.0330] [1.6734] [0.0825] - 

10 0.15 0.2 -0.0820 0.0012 -0.1868 - 
   (0.0392) (0.0643) (0.0952) - 
   [0.0909] [0.0643] [0.2096] - 
  0.6 -0.0755 0.0042 -0.0830 - 
   (0.0313) (0.0615) (0.0699) - 
   [0.0817] [0.0617] [0.1085] - 
  0.8 -0.1043 -0.1063 -0.2649 - 
   (0.0303) (3.9120) (0.1308) - 
   [0.1086] [3.9135] [0.2955] - 
    
 0.75 0.2 -0.0118 0.0020 -0.0412 - 
   (0.0140) (0.0410) (0.0468) - 
   [0.0184] [0.0410] [0.0624] - 
  0.6 -0.0093 -0.0021 -0.0258 - 
   (0.0102) (0.1330) (0.0351) - 
   [0.0138] [0.1330] [0.0436] - 
  0.8 -0.0075 0.0200 -0.0204 - 
   (0.0073) (0.4714) (0.0322) - 
   [0.0105] [0.4718] [0.0381] - 

    
20 0.15 0.2 -0.0398 0.0016 -0.2774 -0.2800 

   (0.0247) (0.0483) (0.0790) (0.0523) 
   [0.0468] [0.0483] [0.2885] [0.2848] 
  0.6 -0.0364 -0.0015 -0.1493 -0.2012 
   (0.0183) (0.0467) (0.0559) (0.0431) 
   [0.0408] [0.0467] [0.1594] [0.2057] 
  0.8 -0.0400 -0.2267 -0.2450 -0.2783 
   (0.0162) (4.3662) (0.0804) (0.0570) 
   [0.0431] [4.3721] [0.2578] [0.2840] 
    
 0.75 0.2 -0.0048 0.0014 -0.0498 -0.0455 
   (0.0093) (0.0240) (0.0328) (0.0203) 
   [0.0104] [0.0240] [0.0596] [0.0498] 
  0.6 -0.0032 0.0013 -0.0267 -0.0301 
   (0.0056) (0.0308) (0.0239) (0.0167) 
   [0.0065] [0.0308] [0.0358] [0.0345] 
  0.8 -0.0024 0.0178 -0.0172 -0.0213 
   (0.0036) (0.7941) (0.0192) (0.0135) 
   [0.0044] [0.7943] [0.0257] [0.0253] 
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Table 2. continued … 

T β γ LSDV-bias AH-bias GMM103-
bias 

GMM110-
bias 

   (S.E.) (S.E.) (S.E.) (S.E.) 
   [R.M.S.E] [R.M.S.E] [R.M.S.E] [R.M.S.E] 
    

30 0.15 0.2 -0.0259 0.0012 -0.3212 -0.2952 
   (0.0204) (0.0365) (0.0651) (0.0418) 
   [0.0330] [0.0365] [0.3278] [0.2981] 
  0.6 -0.0238 0.0001 -0.1967 -0.2431 
   (0.0143) (0.0398) (0.0538) (0.0393) 
   [0.0278] [0.0398] [0.2039] [0.2462] 
  0.8 -0.0229 0.0507 -0.2370 -0.2661 
   (0.0112) (1.3205) (0.0612) (0.0433) 
   [0.0255] [1.3214] [0.2447] [0.2696] 
    
 0.75 0.2 -0.0031 -0.0002 -0.0551 -0.0466 
   (0.0071) (0.0177) (0.0268) (0.0158) 
   [0.0078] [0.0177] [0.0613] [0.0492] 
  0.6 -0.0021 0.0001 -0.0299 -0.0311 
   (0.0041) (0.0212) (0.0194) (0.0127) 
   [0.0046] [0.0212] [0.0356] [0.0336] 
  0.8 -0.0014 0.0002 -0.0176 -0.0205 
   (0.0025) (0.0428) (0.0153) (0.0101) 
   [0.0029] [0.0428] [0.0233] [0.0228] 

N = 50, δ = 0.8, σξ=3, σε=0.75. 
B. In a world with serially correlated errors 

Serially correlated errors introduce an upward bias. In this experiment, the serial 

correlation is modelled as an AR(1) process: 

εit = α εit-1 + ηit ηit ~N(0, ση
 2) (8) 

We run the same simulations as above, but this time, we introduce serially correlated 

errors by setting α = 0.25 and 0.95. In this case, the bias of LSDV estimations will be 

a combination of the downward Nickell bias as well as the upward bias from the 

correlation between yit-1 and εit. The bias of γ, given autocorrelated errors, increases 

with α and T.9 Moreover, autocorrelated errors also introduce a downward bias to β, 

whose size increases with α and T. Table 3 below presents this result. For 

conciseness, the table only includes a subset of results whose parameters approximate 

that of typical growth regressions. 
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Table 3. Bias and standard errors of LSDV estimates given serially correlated errors 

Serial Correlation of ε Serial Correlation of ε 
0 0.25 0.95 0 0.25 0.95 T γ 

Bias (S.E.) Bias (S.E.) Bias (S.E.) 
β 

Bias (S.E.) Bias (S.E.) Bias (S.E.) 
 
5 0.6 -0.1740(0.0557) -0.1171(0.0570) 0.0811(0.0520) 0.15 0.0056(0.0233) 0.0051(0.0237) -0.0035(0.0238)

 0.8 -0.2874(0.0671) -0.2128(0.0663) 0.0703(0.0518)  -0.0038(0.0226) -0.0031(0.0229) 0.0015(0.0243)
    

10 0.6 -0.0755(0.0313) -0.0176(0.0299) 0.1938(0.0319) 0.15 0.0064(0.0121) 0.0021(0.0126) -0.0186(0.0176)
 0.8 -0.1043(0.0303) -0.0606(0.0300) 0.1226(0.0268)  0.0055(0.0115) 0.0021(0.0127) -0.0051(0.0192)
    

20 0.6 -0.0364(0.0183) 0.0285(0.0179) 0.2796(0.0184) 0.15 0.0055(0.0071) -0.0044(0.0080) -0.0429(0.0128)
 0.8 -0.0400(0.0162) -0.0040(0.0154) 0.1478(0.0151)  0.0054(0.0067) 0.0008(0.0076) -0.0193(0.0144)
    

30 0.6 -0.0238(0.0143) 0.0429(0.0145) 0.3141(0.0127) 0.15 0.0040(0.0053) -0.0078(0.0060) -0.0565(0.0104)
 0.8 -0.0229(0.0112) 0.0098(0.0108) 0.1608(0.0104) 0.0045(0.0050) -0.0019(0.0059) -0.0299(0.0137)
   

N = 50, δ = 0.8, σξ=3, σε=0.75. 

    

 

 Other estimators experience similar, albeit stronger, biases as a result of 

serially correlated errors. As shown in Table 4 below, these biases are negligible for 

low T’s. However, as T increases, these biases become significant. A mild serial 

correlation, i.e., with α =0.25, induces a bias of more than 10 percent of the true value 

of the coefficients in AH estimation for T ≥ 10. A similar bias is introduced in GMM 

estimations; however, this bias is less apparent for a low α as it tends to cancel the 

overfitting bias which has the opposite sign. 

Table 4. Biases and standard errors of γ for various estimators given serially correlated 
errors 

    Serial Correlation of ε 
T β γ Estimation 0 0.25 0.95 
    Bias (S.E.) Bias (S.E.) Bias (S.E.) 
     

5 0.15 0.6 LSDV -0.1740(0.0557) -0.1171(0.0570) 0.0811(0.0520) 
   AH 0.0021(0.0921) 0.0349(0.0936) 0.0176(0.1385) 
   GMM103 -0.0529(0.1011) -0.0415(0.0978) 0.0077(0.1038) 
  0.8 LSDV -0.2874(0.0671) -0.2128(0.0663) 0.0703(0.0518) 
   AH -0.5940(15.5292) -0.0865(3.1085) -0.1298(2.7771) 
   GMM103 -0.3618(0.2626) -0.2788(0.2388) 0.0330(0.1771) 
     

10 0.15 0.6 LSDV -0.0755(0.0313) -0.0176(0.0299) 0.1938(0.0319) 
   AH 0.0042(0.0615) 0.0699(0.0613) 0.1433(0.5723) 
   GMM103 -0.0830(0.0699) -0.0534(0.0670) 0.0636(0.0782) 
 0.15 0.8 LSDV -0.1043(0.0303) -0.0606(0.0300) 0.1226(0.0268) 
   AH -0.1063(3.9120) -0.3095(10.4990) -0.0846(3.3137) 
   GMM103 -0.2649(0.1308) -0.1843(0.1196) 0.1112(0.0800) 
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Table 4. continued … 
    Serial Correlation of ε 

T β γ Estimation 0 0.25 0.95 
    Bias (S.E.) Bias (S.E.) Bias (S.E.) 
     

20 0.15 0.6 LSDV -0.0364(0.0183) 0.0285(0.0179) 0.2796(0.0184) 
   AH -0.0015(0.0467) 0.1144(0.0468) 0.8027(2.0128) 
   GMM103 -0.1493(0.0559) -0.0965(0.0582) 0.1544(0.0577) 
   GMM110 -0.2012(0.0431) -0.1320(0.0441) 0.1392(0.0465) 
  0.8 LSDV -0.0400(0.0162) -0.0040(0.0154) 0.1478(0.0151) 

  AH -0.2267(4.3662) 0.9040(18.0152) -0.8140(15.4561) 
  GMM103 -0.2450(0.0804) -0.1561(0.0741) 0.1360(0.0413) 
  GMM110 -0.2783(0.0570) -0.1874(0.0543) 0.1115(0.0344) 
    

30 0.15 0.6 LSDV -0.0238(0.0143) 0.0429(0.0145) 0.3141(0.0127) 
  AH 0.0001(0.0398) 0.1420(0.0419) 0.8426(1.9379) 
  GMM103 -0.1967(0.0538) -0.1266(0.0507) 0.1915(0.0451) 
  GMM110 -0.2431(0.0393) -0.1560(0.0381) 0.1680(0.0364) 
  0.8 LSDV -0.0229(0.0112) 0.0098(0.0108) 0.1608(0.0104) 
  AH 0.0507(1.3205) 0.0393(10.6171) -1.0028(6.5026) 
  GMM103 -0.2370(0.0612) -0.1549(0.0572) 0.1426(0.0322) 
  GMM110 -0.2661(0.0433) -0.1826(0.0393) 0.1185(0.0281) 
    

N = 50, δ = 0.8,  β = 0.15, σξ=3, σε=0.75. 

V. Conclusions  

We begin with the problem of LSDV bias and proposed solutions to it. After six 

dozen simulations, we have bad news and good news. The bad news is that for small 

T’s, LSDV produces significant biases and neither of the two proposed alternatives 

discussed in this paper provides a satisfactory solution to this problem. The good 

news is that with the improved quality and quantity of data for growth regression, 

very few macroeconomists need to worry about having panel datasets with T < 20. In 

such cases, LSDV estimations around the parameters relevant to growth regressions 

(high γ, low β) have negligible biases and are efficient. 

 With serially correlated disturbances, however, the bias can become 

unpredictable. Even if the serial correlations are so mild that they cannot be detected 

by existing tests, they still might cause significant biases in the estimates. The 

problem is since we do not know the degree of serial correlations, we cannot estimate 

the induced upward bias. Based on our simulations, we know that LSDV is the still 

the preferred technique for T ≥ 10 when we suspect the presence of a mild degree of 

serial correlation. As for more severe serial correlations, there exist tests that can 

detect them.  

 With no serial correlation and T ≤ 10, we cannot draw definite conclusions 

about preferred estimation techniques. There is clearly a bias-efficiency trade-off 
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between LSDV and AH; yet in either case, neither one is satisfactory. Therefore, one 

must go beyond this study to find an appropriate estimator. Several alternatives are 

available. Kiviet (1995) suggests corrected LSDV, which Judson and Owen (1999) 

found to be the preferred estimator for balanced panels with small T’s. Hsiao et. al. 

(2001) argue for maximum likelihood and minimum distance estimators, while some 

others propose limited information maximum likelihood (LIML) and symmetrically 

normalised GMM (SNM) (Baltagi, 2001). 

                                                 

Notes 

1 See, Nickell (1981), Arellano and Bond (1991), Kiviet (1995) and Hsiao et. al. (2001). 

2 Judson and Owen (1999, p.9-10) 

3 For instance, Arellano and Bond (1991) find GMM to be more efficient than the Anderson-Hsiao 

estimator. However, Kiviet (1995) shows that, for different experimental designs, Anderson-Hsiao can 

be as efficient as an Arellano-Bond GMM estimator. 

4 Using lagged level does not make AH immune to the possibility of having singularity points; it just 

narrows the range of parameters that can generate such problems. 

5 Islam (1995), Table IV. 

6 Ibid, Appendix 1. 

7 This makes sense if we consider Kiviet’s (1995) derivation of the bias being of O(N-1T-3/2), where the 

order of the bias is not dependent on the value ofγ . Therefore, a lower γ implies a higher relative bias. 

8 For example, for T=5, β =0.75 and γ = 0.6, AH gives a highly biased and inefficient estimate. It is 

possible that this was an isolated case – subsequent experiments with identical parameters were unable 

to replicate this result with such a high bias and standard errors. However, we suspect it is an instance 

of the ‘singularity point’ problem pointed out by Arellano (1989). 

9 For an analytical derivation of this bias, see Appendix 1. 
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Appendix 1. Bias of LSDV estimation in dynamic models with autocorrelated 

errors 

In the following, we derive the total bias of LSDV estimates given AR(1) 

disturbances as in Eq. (8). The derivation extends Eqs.(7) to (14) of Nickell (1981, 

p.1419-21). We have the dynamic model 

yit = γ yit-1 + µi + εit i = 1, …, N; t = 1, … T (A1) 

with no exogenous regressor. We then do the usual step to eliminate the individual 

effects and arrive at  

yit - yi. = γ( yit-1 - yit.-1)+ (εit - εi.)  (A2) 

which is analogous to Eq. (3) above. The asymptotic bias of this specification is 
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Replacing plims as N→∞ with expectations across i, Ei, we obtain  

At = Ei yit-1.εit – Ei yit-1.εi. – Ei yi.-1.εit + Ei yi.-1.εi. (A4) 

 

while Eq. (A1) implies 
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Assuming no autocorrelated errors, Nickell [1981, p. 1420, Eq. (11)] derives the last 

three terms on the right hand side of Eq. (A4) to be  
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Meanwhile, the first term on the right hand side of (A4) simplifies to 
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Hence under serial correlation, the numerator of the bias becomes  
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Meanwhile, taking t = 1 to simplify calculation, the denominator of the bias is  
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Without writing out At/Bt explicitly, we notice two differences between this 

and the Nickell bias. First, the bias of LSDV in the presence of AR(1) autocorrelated 

errors is not of O(1/T). In fact, when the first term of At in Eq. (A8) dominates, the 

bias increases in T. Second, the sign of the bias is ambiguous: it is positive when the 

first right hand side term in Eq. (A8) is greater than the Nickell bias. Finally, the bias 

increases in α. 
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